Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mlpapers/automl
Awesome papers on AutoML (Automatic Machine Learning)
https://github.com/mlpapers/automl
List: automl
automatic-machine-learning automl automl-algorithms awesome awesome-list
Last synced: 16 days ago
JSON representation
Awesome papers on AutoML (Automatic Machine Learning)
- Host: GitHub
- URL: https://github.com/mlpapers/automl
- Owner: mlpapers
- Created: 2020-04-04T20:40:37.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2021-07-20T16:49:19.000Z (over 3 years ago)
- Last Synced: 2024-05-22T13:25:28.368Z (7 months ago)
- Topics: automatic-machine-learning, automl, automl-algorithms, awesome, awesome-list
- Homepage: https://mlpapers.org/automl/
- Size: 3.91 KB
- Stars: 4
- Watchers: 3
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - automl - Awesome papers on AutoML (Automatic Machine Learning). (Other Lists / Monkey C Lists)
README
# Automatic Machine Learning (AutoML)
### Hyper-parameters optimization
- Surveys
- [On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice](https://arxiv.org/pdf/2007.15745.pdf) (2020) *Li Yang, Abdallah Shami*
### Neural Architecture Search (NAS)
### Other
- Automatic Statistician### Software
- **Python**
- Adanet ([Homepage](https://adanet.readthedocs.io), [PyPI](https://pypi.org/project/adanet/))
- AgEBO-Tabular ([Homepage](https://github.com/deephyper/NASBigData), [Paper](https://arxiv.org/pdf/2010.16358.pdf))
- AlphaD3M ([Homepage](https://cims.nyu.edu/~drori/alphad3m.html), [Paper](https://arxiv.org/pdf/1905.10345.pdf)) - closed source. Uses RL to tackle pipeline search
- Auptimizer ([Homepage](https://lge-arc-advancedai.github.io/auptimizer/), [PyPI](https://pypi.org/project/auptimizer/))
- Auto-PyTorch ([Homepage](https://github.com/automl/Auto-PyTorch), [Paper](https://arxiv.org/pdf/2006.13799.pdf))
- Auto-Sklearn ([Homepage](https://automl.github.io/auto-sklearn/master/), [PyPI](https://pypi.org/project/auto-sklearn/)) - based on bayesian optimization
- Auto-Sklearn 2.0 ([Homepage](https://automl.github.io/auto-sklearn/master/), [PyPI](https://pypi.org/project/auto-sklearn/), [Paper](https://arxiv.org/pdf/2007.04074.pdf)) - uses portfolio learning
- AutoGBT ([Homepage](https://github.com/flytxtds/AutoGBT))
- AutoGBT-alt ([Homepage](https://github.com/pfnet-research/autogbt-alt))
- AutoGluon ([Homepage](https://autogluon.mxnet.io), [PyPI](https://pypi.org/project/autogluon/)) - uses multi-Layer stack ensembling with k-fold ensemble bagging at all layers
- AutoKeras ([Homepage](https://autokeras.com/), [PyPI](https://pypi.org/project/autokeras/))
- AutoML Zero ([Homepage](https://github.com/google-research/google-research/tree/master/automl_zero), [Paper](https://arxiv.org/pdf/2003.03384.pdf))
- AutoML-DSGE ([Homepage](https://github.com/fillassuncao/automl-dsge), [Paper](https://arxiv.org/pdf/2004.00307.pdf))
- automl-gs ([Homepage](https://github.com/minimaxir/automl-gs/), [PyPI](https://pypi.org/project/automl_gs/)
- AutoRec ([Homepage](https://github.com/datamllab/AutoRecSys), [Video](https://www.youtube.com/watch?v=z0HkKGVAQkE)) - Automated Recommender System
- AutoViML([Homepage](https://github.com/AutoViML/Auto_ViML))
- AX ([Homepage](https://ax.dev/), [PyPI](https://pypi.org/project/ax-platform/))
- Axolotl ([Homepage](https://gitlab.com/axolotl1/axolotl))
- BOHB ([Homepage](https://www.automl.org/automl/bohb/))
- BoTorch ([Homepage](https://botorch.org/docs/introduction.html), [PyPI](https://pypi.org/project/botorch/))
- Gama ([Homepage](https://github.com/PGijsbers/gama/), [Paper](https://arxiv.org/pdf/2007.04911.pdf))
- H2O AutoML ([Homepage](http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html))
- HpBandSter ([Homepage](https://automl.github.io/HpBandSter/))
- Hyperopt ([Homepage](http://hyperopt.github.com/hyperopt/), [PyPI](https://pypi.org/project/hyperopt/), [Paper](http://www.coxlab.org/pdfs/2013_bergstra_hyperopt.pdf))
- Hyperparameter Hunter ([Homepage](https://hyperparameter-hunter.readthedocs.io/en/latest/), [PyPI](https://pypi.org/project/hyperparameter_hunter/))
- Katib ([Homepage](https://github.com/kubeflow/katib), [Paper](https://arxiv.org/pdf/2006.02085.pdf))
- Keras Tuner ([Homepage](https://keras-team.github.io/keras-tuner/), [PyPI](https://pypi.org/project/keras-tuner/))
- Lale ([Homepage](https://github.com/ibm/lale), [PyPI](https://pypi.org/project/lale/), [Paper](https://arxiv.org/pdf/2007.01977.pdf))
- Ludwig ([Homepage](https://github.com/uber/ludwig/), [PyPI](https://pypi.org/project/ludwig/))
- Mango ([Homepage](https://github.com/ARM-software/mango), [Paper](https://arxiv.org/pdf/2005.11394.pdf))
- Milano ([Homepage](https://nvidia.github.io/Milano/))
- MLBox ([Homepage](https://mlbox.readthedocs.io/en/latest/), [PyPI](https://pypi.org/project/mlbox/))
- nni ([Homepage](https://nni.readthedocs.io/en/latest/), [PyPI](https://pypi.org/project/nni/))
- Optuna ([Homepage](https://optuna.org/), [PyPI](https://pypi.org/project/optuna/))
- Petridish ([Homepage](https://github.com/microsoft/petridishnn), [Paper](https://arxiv.org/abs/1905.13360))
- PHS ([Homepage](https://github.com/cc-hpc-itwm/PHS), [Paper](https://arxiv.org/pdf/2002.11429))
- ray ([Homepage](https://ray.io/), [PyPI](https://pypi.org/project/ray/))
- RECIPE ([Homepage](https://github.com/laic-ufmg/Recipe))
- ROBO ([Homepage](https://www.automl.org/automl/robo/))
- SMAC3 ([Homepage](https://automl.github.io/SMAC3/master/), [PyPI](https://pypi.org/project/smac/))
- Spearmint ([Homepage](https://github.com/HIPS/Spearmint))
- Talos ([Homepage](https://github.com/autonomio/talos), [PyPI]((https://pypi.org/project/talos/))
- TPOT ([Homepage](https://automl.info/tpot/), [PyPI](https://pypi.org/project/TPOT/))
- VolcanoML ([Paper](https://arxiv.org/pdf/2107.08861.pdf), [Code](https://github.com/VolcanoML))- **Scala**
- TransmogrifAI ([Homepage](https://github.com/salesforce/TransmogrifAI))