Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/murari023/awesome-aerial-object-detection
A curated list of papers for object detection in aerial scenes and related application resources
https://github.com/murari023/awesome-aerial-object-detection
List: awesome-aerial-object-detection
Last synced: about 2 months ago
JSON representation
A curated list of papers for object detection in aerial scenes and related application resources
- Host: GitHub
- URL: https://github.com/murari023/awesome-aerial-object-detection
- Owner: murari023
- Created: 2018-12-04T08:37:20.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2020-09-04T03:23:28.000Z (over 4 years ago)
- Last Synced: 2024-04-11T19:08:53.263Z (8 months ago)
- Size: 41 KB
- Stars: 130
- Watchers: 8
- Forks: 22
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-artificial-intelligence-research - Aerial Object Detection
- ultimate-awesome - awesome-aerial-object-detection - A curated list of papers for object detection in aerial scenes and related application resources. (Other Lists / Monkey C Lists)
README
# awesome-aerial-object-detection
A curated list of papers for object detection in aerial scenes and related application resources## Contents
- [Deep Learning based Papers](https://github.com/murari023/awesome-aerial-object-detection#deep-learning-based-papers)
- [Non-Deep Learning based Papers](https://github.com/murari023/awesome-aerial-object-detection#non-deep-learning-based-papers)
- [Review/survey papers](https://github.com/murari023/awesome-aerial-object-detection#reviewsurvey-papers)
- [Datasets](https://github.com/murari023/awesome-aerial-object-detection#datasets)
- [Awesome Researchers](https://github.com/murari023/awesome-aerial-object-detection#awesome-researchers)
- [Awesome Resources](https://github.com/murari023/awesome-aerial-object-detection#awesome-resources)
- [Projects](https://github.com/murari023/awesome-aerial-object-detection/blob/master/README.md#projects)## Deep Learning based Papers
## 2020 Papers
### Journals
- [2020-Vehicle and Vessel Detection on Satellite Imagery: A Comparative Study on Single-Shot Detectors](https://www.mdpi.com/2072-4292/12/7/1217) (**2020 - MDPI Remote Sensing**)### Conference
- [2020-MOR-UAV: A Benchmark Dataset and Baselines for Moving Object Recognition in UAV Videos](https://arxiv.org/abs/2008.01699) (**ACM-MM 2020**)
- [2020-Density Map Guided Object Detection in Aerial Images](http://openaccess.thecvf.com/content_CVPRW_2020/papers/w11/Li_Density_Map_Guided_Object_Detection_in_Aerial_Images_CVPRW_2020_paper.pdf)(**CVPRW-2020**)
## 2019 Papers
### Journals
- [2019-ORSIm Detector: A novel object detection framework in optical remote sensing imagery using spatial-frequency channel features](https://ieeexplore.ieee.org/abstract/document/8654203/) (**2019 - IEEE Transactions on Geoscience and Remote Sensing**)
- [2019-Dac-sdc low power object detection challenge for uav applications](https://ieeexplore.ieee.org/abstract/document/8787881/) (**2019-TPAMI**)
- [2019-AVDNet: A SmallSized Vehicle Detection Network for Aerial Visual Data](https://arxiv.org/abs/1907.07477) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019-Vehicle Detection in High-Resolution Images Using Superpixel Segmentation and CNN Iteration Strategy](https://www.researchgate.net/publication/327616822_Vehicle_Detection_in_High-Resolution_Images_Using_Superpixel_Segmentation_and_CNN_Iteration_Strategy) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019-Adaptive Anchor for Fast Object Detection in Aerial Image](https://ieeexplore.ieee.org/document/8824218/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019-Local Attention Networks for Occluded Airplane Detection in Remote Sensing Images](https://ieeexplore.ieee.org/document/8769873/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019-Multi-Scale Spatial and Channel-wise Attention for Improving Object Detection in Remote Sensing Imagery](https://ieeexplore.ieee.org/document/8807319/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019-Vehicle Detection From High-Resolution Remote Sensing Imagery Using Convolutional Capsule Networks](https://ieeexplore.ieee.org/document/8709752/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019-Scale adaptive proposal network for object detection in remote sensing images](https://ieeexplore.ieee.org/abstract/document/8605345) (**2019 - IEEE Geoscience and Remote Sensing Letters**)### Conference
- [2019-Clustered object detection in aerial images](http://openaccess.thecvf.com/content_ICCV_2019/papers/Yang_Clustered_Object_Detection_in_Aerial_Images_ICCV_2019_paper.pdf)(**ICCV-2019**)
-[2019-How to fully exploit the abilities of aerial image detectors](http://openaccess.thecvf.com/content_ICCVW_2019/papers/VISDrone/Zhang_How_to_Fully_Exploit_The_Abilities_of_Aerial_Image_Detectors_ICCVW_2019_paper.pdf)(**ICCVW-2019**)
- [2019-Learning RoI Transformer for Oriented Object Detection in Aerial Images](http://openaccess.thecvf.com/content_CVPR_2019/papers/Ding_Learning_RoI_Transformer_for_Oriented_Object_Detection_in_Aerial_Images_CVPR_2019_paper.pdf) (**CVPR-2019**)
- [2019-SSSDET: Simple Short and Shallow Network for Resource Efficient Vehicle Detection in Aerial Scenes](https://ieeexplore.ieee.org/abstract/document/8803262/) (**ICIP-2019**)
- [2019-SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects](SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects) (**ICCV-2019**)
- [2019-Cropping Region Proposal Network Based Framework for Efficient Object Detection on Large Scale Remote Sensing Images](https://ieeexplore.ieee.org/abstract/document/8784756/) (**ICME-2019**)
- [2019-Feature-Attentioned Object Detection in Remote Sensing Imagery](https://ieeexplore.ieee.org/abstract/document/8803521/) (**ICIP-2019**)
- [2019-Patch-Level Augmentation for Object Detection in Aerial Images](http://openaccess.thecvf.com/content_ICCVW_2019/html/VISDrone/Hong_Patch-Level_Augmentation_for_Object_Detection_in_Aerial_Images_ICCVW_2019_paper.html) (**ICCVW-2019**)
- [2019-Towards universal object detection by domain attention](http://openaccess.thecvf.com/content_CVPR_2019/html/Wang_Towards_Universal_Object_Detection_by_Domain_Attention_CVPR_2019_paper.html) (**CVPR-2019**)
- [2019-Learning Object-Wise Semantic Representation for Detection in Remote Sensing Imagery](http://openaccess.thecvf.com/content_CVPRW_2019/html/DOAI/Li_Learning_Object-Wise_Semantic_Representation_for_Detection_in_Remote_Sensing_Imagery_CVPRW_2019_paper.html) (**CVPRW-2019**)
- [2019-Delving into Robust Object Detection from Unmanned Aerial Vehicles: A Deep Nuisance Disentanglement Approach](http://openaccess.thecvf.com/content_ICCV_2019/html/Wu_Delving_Into_Robust_Object_Detection_From_Unmanned_Aerial_Vehicles_A_ICCV_2019_paper.html) (**ICCV-2019**)
- [2019-SkyScapes Fine-Grained Semantic Understanding of Aerial Scenes](http://openaccess.thecvf.com/content_ICCV_2019/html/Azimi_SkyScapes__Fine-Grained_Semantic_Understanding_of_Aerial_Scenes_ICCV_2019_paper.html) (**ICCV-2019**)
- [2019-The effects of super-resolution on object detection performance in satellite imagery](http://openaccess.thecvf.com/content_CVPRW_2019/html/EarthVision/Shermeyer_The_Effects_of_Super-Resolution_on_Object_Detection_Performance_in_Satellite_CVPRW_2019_paper.html) (**CVPRW-2019**)## 2018 Papers
### Journals
- [2018-Detection ofMulticlass Objects in Optical Remote Sensing Images](https://ieeexplore.ieee.org/abstract/document/8573851/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2018 - Convolutional SVM Networks for Object Detection in UAV Imagery](https://ieeexplore.ieee.org/document/8288824)
- [2018 - Semantic Labeling Based Vehicle Detection in Aerial Imagery](https://ieeexplore.ieee.org/document/8354178)
- [2018 - The Unmanned Aerial Vehicle Benchmark- Object Detection and Tracking](https://arxiv.org/abs/1804.00518)
- [2018 - Vehicle Detection and Counting in High-Resolution Aerial Images Using Convolutional Regression Neural Network](https://ieeexplore.ieee.org/iel7/6287639/8274985)
- [2018 - Vehicle Detection in Aerial Images](https://arxiv.org/abs/1801.07339)
- [2018 - Multiscale Visual Attention Networks for Object Detection in VHR Remote Sensing Images](http://ieeexplore.ieee.org/document/8513990/)
- [2018 - Rotation-Insensitive and Context-Augmented Object Detection in Remote Sensing Images](https://ieeexplore.ieee.org/document/8240988)
### Conferences## 2017 Papers
- [2017 - Fast Deep Vehicle Detection in Aerial Images](https://ieeexplore.ieee.org/document/7926624)
- [2017 - Toward Fast and Accurate Vehicle Detection in Aerial Images Using Coupled Region-Based Convolutional Neural Networks](https://ieeexplore.ieee.org/document/7921594)
- [2017 - Fast multidirectional vehicle detection on aerial images using region based convolutional neural networks](https://ieeexplore.ieee.org/document/8127335)
- [2017 - Deep Multi-modal Vehicle Detection in Aerial ISR Imagery](http://ieeexplore.ieee.org/document/7926690/)
- [2017 - A closer look- Small object detection in faster R-CNN](https://ieeexplore.ieee.org/abstract/document/8019550)
- [2017 - Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks](https://ieeexplore.ieee.org/document/7827088/)## 2016 Papers
- [2016 - RIFD-CNN Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection](http://ieeexplore.ieee.org/document/7780684)
- [2016 - Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images](https://ieeexplore.ieee.org/iel7/36/7580581/07560644.pdf)
- [2016 - Efficient saliency-based object detection in remote sensing images using deep belief networks](https://ieeexplore.ieee.org/document/7378278)
- [2016 - Convolutional Neural Network Based Automatic Object Detection on Aerial Images](https://ieeexplore.ieee.org/document/7447728)## Non-Deep Learning based Papers
## 2019 Papers
### Journals
- [2019 - Detection of Small Floating Targets on the Sea Surface Based on Multi-Features and Principal Component Analysis](https://ieeexplore.ieee.org/document/8818289/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019 - Infrared Small Target Detection Using Homogeneity-Weighted Local Contrast Measure](https://ieeexplore.ieee.org/document/8754801/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019 - Infrared Small Target Detection by Density Peaks Searching and Maximum-Gray Region Growing](https://ieeexplore.ieee.org/document/8715427/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019-Ship Detection With Superpixel-Level Fisher Vector in High-Resolution SAR Images](https://ieeexplore.ieee.org/document/8744255/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019-Fourier-Based Rotation-Invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection](https://ieeexplore.ieee.org/document/8737724/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
- [2019-Fast and Automatic Ship Detection for SAR Imagery Based on Multiscale Contrast Measure](https://ieeexplore.ieee.org/document/8716523/) (**2019 - IEEE Geoscience and Remote Sensing Letters**)
## 2018 Papers
- [2018 - Arbitrary-Oriented Ship Detection Framework in Optical Remote-Sensing Images](https://ieeexplore.ieee.org/document/8320789/)
- [2018 - Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning](http://ieeexplore.ieee.org/document/8412109)
- [2017 - An On-Road Vehicle Detection Method for High-Resolution Aerial Images Based on Local and Global Structure Learning](https://ieeexplore.ieee.org/document/7937949/)
- [2017 - An Enhanced Viola-Jones Vehicle Detection Method From Unmanned Aerial Vehicles Imagery](https://ieeexplore.ieee.org/abstract/document/7726065/)
- [2017 - SDBD- A hierarchical region-of-interest detection approach in large-scale remote sensing image](https://ieeexplore.ieee.org/abstract/document/7875421/)
- [2017 - An effective method based on ACF for aircraft detection in remote sensing images](https://ieeexplore.ieee.org/document/7888531/)
- [2016 - Vehicle Detection in High-Resolution Aerial Images Based on Fast Sparse Representation Classification and Multiorder Feature](https://ieeexplore.ieee.org/document/7410075/)
- [2015 - Weakly supervised learning for target detection in remote sensing images](http://ieeexplore.ieee.org/document/6915882)
- [2015 - Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning](https://ieeexplore.ieee.org/document/6991537)
- [2014 - Object detection in high-resolution remote sensing images using rotation invariant parts based model](https://ieeexplore.ieee.org/document/6512596/)### Landmark Papers in Background Subtraction
### 2018 Papers
### 2017 Papers
## Review/survey Papers
- [2017 - Deep Learning in Remote Sensing- A Comprehensive Review and List of Resources](https://arxiv.org/pdf/1710.03959)
- [2016 - A survey on object detection in optical remote sensing images](https://arxiv.org/abs/1603.06201)
## Datasets
- [DOTA](https://captain-whu.github.io/DOTA/), [2018 - DOTA: A Large-scale Dataset for Object DeTection in Aerial Images](https://arxiv.org/abs/1711.10398)
- [iSAID](https://captain-whu.github.io/iSAID/), [2019-iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images](http://openaccess.thecvf.com/content_CVPRW_2019/papers/DOAI/Zamir_iSAID_A_Large-scale_Dataset_for_Instance_Segmentation_in_Aerial_Images_CVPRW_2019_paper.pdf)
- [VisDrone](http://www.aiskyeye.com/) [2018-Vision Meets Drone: A Challenge](http://www.aiskyeye.com/upfile/Vision_Meets_Drones_A_Challenge.pdf)
- [UAVDT](https://sites.google.com/site/daviddo0323/projects/uavdt), [2018 - The Unmanned Aerial Vehicle Benchmark- Object Detection and Tracking](https://arxiv.org/abs/1804.00518)
- [DAC-SDC](https://pitt.app.box.com/s/756141768nn92cj0dkfbg6dan17c4h4q), [2019-DAC-SDC Low Power Object Detection Challenge for UAV Applications](https://arxiv.org/pdf/1809.00110.pdf)
- [VEDAI](https://downloads.greyc.fr/vedai), [2015 - VEDAI Vehicle Detection in Aerial Imagery: A small target detection](https://hal.archives-ouvertes.fr/hal-01122605v2/document)
- [DLR-3K](https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5431/9230_read-42467/)
- [NWPU VHR-10 dataset](http://www.escience.cn/people/gongcheng/NWPU-VHR-10.html), [2016 - Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images](https://ieeexplore.ieee.org/iel7/36/4358825/07560644.pdf)
- [Aerial Elephant](http://openaccess.thecvf.com/content_CVPRW_2019/papers/DOAI/Naude_The_Aerial_Elephant_Dataset_A_New_Public_Benchmark_for_Aerial_CVPRW_2019_paper.pdf), [2019-The Aerial Elephant Dataset: A New Public Benchmark for Aerial Object Detection.](http://openaccess.thecvf.com/content_CVPRW_2019/papers/DOAI/Naude_The_Aerial_Elephant_Dataset_A_New_Public_Benchmark_for_Aerial_CVPRW_2019_paper.pdf)
- [Vehicle Re-ID](https://arxiv.org/abs/1904.01400), [2019-Vehicle Re-identification in Aerial Imagery: Dataset and Approach]
- [Okutama](http://okutama-action.org/), [2017-Okutama-action:An aerial view video dataset for concurrent human action detection](http://openaccess.thecvf.com/content_cvpr_2017_workshops/w34/html/Barekatain_Okutama-Action_An_Aerial_CVPR_2017_paper.html)## Awesome Researchers
## Awesome Resources## Projects
- [VisionIntelligenceLab](https://visionintelligence.github.io/)
- [Lightnet](https://gitlab.com/eavise/lightnet)## Contributions are always welcomed!
If you have any suggestions (missing papers, projects, source code, new papers, key researchers, dataset, etc.), please feel free to edit and pull a request. (or just let me know the title of paper)