Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/n-kats/awesome-gtnn

Lists of awesome resources for geometric or topological neural network
https://github.com/n-kats/awesome-gtnn

List: awesome-gtnn

Last synced: 16 days ago
JSON representation

Lists of awesome resources for geometric or topological neural network

Awesome Lists containing this project

README

        

# awesome-GTNN
Lists of awesome resources for geometric or topological neural network

## theme
* graph
* point cloud
* social net
* mesh
* chemistry
* depth
* TDA
* autoML

## neural network
* https://github.com/deepmind/graph_nets
* https://github.com/rusty1s/pytorch_geometric
* https://github.com/facebookresearch/PyTorch-BigGraph
* https://github.com/pfnet-research/chainer-chemistry
* https://github.com/dmlc/dgl
* https://github.com/tensorflow/graphics

### others
* https://github.com/matenure/FastGCN
* https://github.com/ethanfetaya/NRI
* https://github.com/Eilene/GWNN
* https://github.com/benedekrozemberczki/GraphWaveletNeuralNetwork
* https://github.com/tkipf/gcn
* https://github.com/charlesq34/pointnet
* https://github.com/charlesq34/pointnet2
* https://github.com/yewzijian/3DFeatNet
* https://github.com/shaohua0116/Multiview2Novelview
* https://github.com/rajammanabrolu/KG-DQN

## automatic model
* https://github.com/melodyguan/enas
* https://github.com/renqianluo/NAO
* https://github.com/quark0/darts

## depth
* https://github.com/tinghuiz/SfMLearner

## TDA
* https://github.com/Ripser/ripser

## knowledge
* https://github.com/EagleW/PaperRobot

## papers
### survey
* [Deep Learning on Graphs: A Survey](https://arxiv.org/abs/1812.04202)
* [Graph Neural Networks: A Review of Methods and Applications](https://arxiv.org/abs/1812.08434)
* [A Comprehensive Survey on Graph Neural Networks](https://arxiv.org/abs/1901.00596)

### graph layer
* [GCN](https://arxiv.org/abs/1609.02907)
* [TreeLSTM](https://arxiv.org/abs/1503.00075)
* [R-GCN](https://arxiv.org/abs/1703.06103)
* [JTNN](https://arxiv.org/abs/1802.04364)
* [LGNN](https://arxiv.org/abs/1705.08415)
* [DGMG](https://arxiv.org/abs/1803.03324)
* [Spline](https://arxiv.org/abs/1711.08920)
* [ChebConv](https://arxiv.org/abs/1606.09375)
* [NNConv](https://arxiv.org/abs/1704.01212)
* [GAT](https://arxiv.org/abs/1710.10903)
* [AGNN](https://arxiv.org/abs/1803.03735)
* [SAGE](https://arxiv.org/abs/1706.02216)
* [GIN](https://arxiv.org/abs/1810.00826)
* [ARMA](https://arxiv.org/abs/1901.01343)
* [RGCN](https://arxiv.org/abs/1703.06103)
* [Edge](https://arxiv.org/abs/1801.07829)
* [GWNN](https://openreview.net/forum?id=H1ewdiR5tQ)
* [GraphWarpModule](https://arxiv.org/abs/1902.01020)
* [GlobalAttention](https://arxiv.org/abs/1511.05493)
* [Set2Set](https://arxiv.org/abs/1511.06391)
* [SortPool](https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf)
* [DenseDifferentiablePooling](https://arxiv.org/abs/1806.08804)
* [GraclusPooing](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf)
* [VoxelGridPooing](https://arxiv.org/abs/1704.02901)
* [GMM](https://arxiv.org/abs/1611.08402)
* [Graph U-Net](https://openreview.net/forum?id=HJePRoAct7)
* [TopKPooing](https://arxiv.org/abs/1811.01287)
* [DeepGraphInfomax](https://arxiv.org/abs/1809.10341)
* [graph_nets](https://arxiv.org/abs/1806.01261)
* [simplfying GCN](https://arxiv.org/abs/1902.07153)

### depth
* [SfMLearner](https://arxiv.org/abs/1704.07813)
* [vid2depth](https://arxiv.org/abs/1802.05522)
* [struct2depth](https://arxiv.org/abs/1811.06152)
* [Depth from Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cameras](https://arxiv.org/abs/1904.04998)

### generative model
* [MolGAN](https://arxiv.org/abs/1805.11973)
* [GraphVAE](https://arxiv.org/abs/1802.03480)
* [GenerativeGCN for growing graphs](https://arxiv.org/abs/1903.02640)

### 3D-aware neural network
* [HoloGAN](https://arxiv.org/abs/1904.01326)

### point cloud
* [PointNet](https://arxiv.org/abs/1612.00593)
* [PointNet++](https://arxiv.org/abs/1706.02413)
* [PointCNN](https://arxiv.org/abs/1801.07791)
* [Submanifold Sparse Convolutional Networks](https://arxiv.org/abs/1706.01307)
* [3D Graph Embedding Learning with a Structure-aware Loss Function
for Point Cloud Semantic Instance Segmentation](https://arxiv.org/abs/1902.05247)
* [Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds](https://arxiv.org/abs/1802.01500)
* [PCPNET](https://arxiv.org/abs/1710.04954)
* [VoxelNet](https://arxiv.org/abs/1711.06396)
* [Frustum PointNets for 3D Object Detection from RGB-D Data](https://arxiv.org/abs/1711.08488)

### mesh
* [Neural 3D Mesh Renderer](https://arxiv.org/abs/1711.07566)
* [Pixel2Mesh](https://arxiv.org/abs/1804.01654)

### network architecture search
* [NAS](https://arxiv.org/abs/1707.07012)
* [PNAS](https://arxiv.org/abs/1712.00559)
* [ENAS](https://arxiv.org/abs/1802.03268)
* [EPNAS](https://arxiv.org/abs/1808.00391)
* [NAONet](https://arxiv.org/abs/1808.07233)
* [DARTS](https://arxiv.org/abs/1806.09055)
* [GHN](https://arxiv.org/abs/1810.05749)
* [A Differentiable Gaussian-like Distribution on Hyperbolic Space for Gradient-Based Learning](https://arxiv.org/abs/1902.02992)
* [Exploring Randomly Wired Neural Networks for Image Recognitio](https://arxiv.org/abs/1904.01569)

### TDA
* [Beyond topological persistence: Starting from networks](https://arxiv.org/abs/1901.08051v1)
* [Topological Persistence in Geometry and Analysis](https://arxiv.org/abs/1904.04044)
* [PersLay](https://arxiv.org/abs/1904.09378)

### path
* [Extrapolating paths with graph neural networks](https://arxiv.org/abs/1903.07518)

### Applications
* [Context-Aware Visual Compatibility Prediction](https://arxiv.org/abs/1902.03646)
* [NetworkSemanticSegmentation w/ GitHub](https://arxiv.org/abs/1902.05220v1)

### knowledge
* [PaperRobot](https://arxiv.org/abs/1905.07870)

### related
* [Graph Spectral Regularization for Neural Network Interpretability](https://arxiv.org/abs/1810.00424)
* [On the Transferability of Spectral Graph Filters](https://arxiv.org/abs/1901.10524)
* [KG-DGN](https://arxiv.org/abs/1812.01628)
* [Hyperbolic Disk Embeddings for Directed Acyclic Graphs](https://arxiv.org/abs/1902.04335)
* [Graph cohomologies and rational homotopy type of configuration spaces](https://arxiv.org/abs/1904.01452)
* [Topology and curvature of metric spaces](https://arxiv.org/abs/1904.00222)

## dataset
* QM9
[MoleculeNet: A Benchmark for Molecular Machine Learning](https://arxiv.org/abs/1703.00564)
[Neural Message Passing for Quantum Chemistry](https://arxiv.org/abs/1704.01212)
* [ModelNet](http://modelnet.cs.princeton.edu/)[[format](http://segeval.cs.princeton.edu/public/off_format.html)]
* [semanticscholar](http://labs.semanticscholar.org/corpus/)
* [semanticscholar api](http://api.semanticscholar.org/)
* [shibuya 3d](https://3dcel.com/study/case01/)
* [Stanford Large Network Dataset Collection](http://snap.stanford.edu/data/)

## experiments

## python
* neworkx
* plyfile
* rdflib
* pygsp
* pydotplus
* graphviz
* pygraphviz(require `apt install graphviz graphviz-dev`)

## others
* [cytoscape](https://cytoscape.org/index.html)
* [FBX](https://www.autodesk.com/products/fbx/overview)
* graphviz
* [STL](https://en.wikipedia.org/wiki/STL_(file_format))

## neuroscience
* [Dale's principle](https://en.wikipedia.org/wiki/Dale%27s_principle)

## TDA
* Vietoris-Rips complex
* prsistent homology
* barcode
* Taken's theorem
* Janko Latschev's theorem

## others
* https://paperswithcode.com/area/graphs
* https://ai.facebook.com/blog/open-sourcing-pytorch-biggraph-for-faster-embeddings-of-extremely-large-graphs
* https://ai.googleblog.com/2019/05/moving-camera-moving-people-deep.html
* https://jian-tang.com/files/AAAI19/aaai-grltutorial-part0-intro.pdf
* http://i.stanford.edu/~jure/pub/talks2/graph_gen-iclr-may19-long.pdf
* https://cs.stanford.edu/~jure/
*
### for Japanese
* https://www.slideshare.net/shotarosano5/automl-in-neurips-2018
* https://medium.com/programming-soda/graph-neural-network%E3%81%AE%E5%87%A6%E7%90%86%E3%81%A8%E5%8A%B9%E6%9E%9C%E3%82%92%E7%90%86%E8%A7%A3%E3%81%99%E3%82%8B-how-powerful-are-graph-neural-networks-a26ee9245cce
* https://qiita.com/no_more_syakai/items/f1358e33e8376ae1766d
* https://www.slideshare.net/emakryo/neural-networks-for-graph-data-neurips2018pfn
* https://speakerdeck.com/m_mochizuki/ai-drug-discovery-in-the-view-of-competitions
* https://speakerdeck.com/nnchiba/point-cloud-deep-learning-survey-ver-2
* https://engineer.dena.jp/2019/06/cv-papers-19-3dvision.html