Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nykabhishek/awesome-ai-ml-cheatsheet
A curated list of cheat sheets and documentation for the AI and ML community for quick access
https://github.com/nykabhishek/awesome-ai-ml-cheatsheet
List: awesome-ai-ml-cheatsheet
ai cheatsheet data-science deep-learning machine-learning python
Last synced: 16 days ago
JSON representation
A curated list of cheat sheets and documentation for the AI and ML community for quick access
- Host: GitHub
- URL: https://github.com/nykabhishek/awesome-ai-ml-cheatsheet
- Owner: nykabhishek
- License: cc0-1.0
- Created: 2021-12-18T00:42:31.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-06-06T20:27:28.000Z (over 2 years ago)
- Last Synced: 2024-04-18T12:23:27.892Z (8 months ago)
- Topics: ai, cheatsheet, data-science, deep-learning, machine-learning, python
- Homepage:
- Size: 44.9 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-ai-ml-cheatsheet - A curated list of cheat sheets and documentation for the AI and ML community for quick access. (Other Lists / PowerShell Lists)
README
# Cheatsheets for AI and ML community
[![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
A list of curated cheat sheets and helpful documentations for the Robotics and AI community.
## Concepts
- [Artificial Intelligence](https://github.com/afshinea/stanford-cs-221-artificial-intelligence/blob/master/en/super-cheatsheet-artificial-intelligence.pdf)
- [Deep Learning](https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/super-cheatsheet-deep-learning.pdf)
- [Data Science Tools](https://github.com/shervinea/mit-15-003-data-science-tools/blob/master/en/super-study-guide-data-science-tools.pdf)
- Machine Learning - [1](https://ml-cheatsheet.readthedocs.io/en/latest/index.html) | [2](https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf)## Python Libraries
- [Python3](https://coodict.github.io/python3-in-one-pic/)
- keras - [cheatsheet](https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf) | [API docs](https://keras.io/api/)
- [Matplotlib](https://matplotlib.org/cheatsheets/cheatsheets.pdf)
- [numpy](https://numpy.org/doc/stable/numpy-ref.pdf)
- [pandas](https://github.com/pandas-dev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.pdf)
- scikit learn - [User Guide](https://scikit-learn.org/stable/user_guide.html), [Cheat Sheet](https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf), [Estimator selection flowchart](https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html)
- [scipy](https://docs.scipy.org/doc/scipy/reference/)## Software Tools
- [bash](https://devhints.io/bash)
- [C](https://cheatography.com/ashlyn-black/cheat-sheets/c-reference/)
- [C++](https://cppcheatsheet.readthedocs.io/_/downloads/en/latest/pdf/)
- [conda](https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf)
- docker - [cheatsheet](https://www.docker.com/sites/default/files/d8/2019-09/docker-cheat-sheet.pdf) | [ultimate guide](https://dockerlabs.collabnix.com/docker/cheatsheet/)
- [git](https://education.github.com/git-cheat-sheet-education.pdf) | [github](https://github.com/tiimgreen/github-cheat-sheet)
- [latex](https://wch.github.io/latexsheet/latexsheet.pdf)
- [Markdown](https://markdown-guide.readthedocs.io/en/latest/basics.html)
- [matlab](https://n.ethz.ch/~marcokre/download/ML-CheatSheet.pdf)
- [R](https://www.rstudio.com/resources/cheatsheets/)
- [ROS](https://w3.cs.jmu.edu/spragunr/CS354_S19/handouts/ROSCheatsheet.pdf)
- [vim](https://vimsheet.com/)
- vs-code - [Linux](https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf) | [mac-OS](https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf) | [Windows](https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf)## Math
- [Calculus](https://github.com/shervinea/stanford-cme-102-ordinary-differential-equations/blob/master/calculus.pdf)
- [Linear Algebra](https://github.com/shervinea/stanford-cme-102-ordinary-differential-equations/blob/master/linear-algebra.pdf)
- Ordinary Differential Equations (ODE) - [First Order](https://github.com/shervinea/stanford-cme-102-ordinary-differential-equations/blob/master/cheatsheet-first-ode.pdf) | [Second Order](https://github.com/shervinea/stanford-cme-102-ordinary-differential-equations/blob/master/cheatsheet-second-ode.pdf) | [Applications](https://github.com/shervinea/stanford-cme-102-ordinary-differential-equations/blob/master/cheatsheet-applications.pdf)
- Probability - [1](https://github.com/shervinea/stanford-cme-106-probability-and-statistics/blob/master/cheatsheet-probability.pdf) | [2](https://static1.squarespace.com/static/54bf3241e4b0f0d81bf7ff36/t/55e9494fe4b011aed10e48e5/1441352015658/probability_cheatsheet.pdf)
- [Statistics](https://github.com/shervinea/stanford-cme-106-probability-and-statistics/blob/master/cheatsheet-statistics.pdf)
- [Trigonometry](https://github.com/shervinea/stanford-cme-102-ordinary-differential-equations/blob/master/trigonometry.pdf)