Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/oceanmodeling/StormEvents

Python interfaces for observational data surrounding named storm events, born from @jreniel's ADCIRCpy
https://github.com/oceanmodeling/StormEvents

Last synced: about 1 month ago
JSON representation

Python interfaces for observational data surrounding named storm events, born from @jreniel's ADCIRCpy

Awesome Lists containing this project

README

        

# StormEvents

[![test](https://github.com/oceanmodeling/StormEvents/actions/workflows/test.yml/badge.svg)](https://github.com/oceanmodeling/StormEvents/actions/workflows/test.yml)
[![build](https://github.com/oceanmodeling/StormEvents/actions/workflows/build.yml/badge.svg)](https://github.com/oceanmodeling/StormEvents/actions/workflows/build.yml)
[![codecov](https://codecov.io/gh/oceanmodeling/StormEvents/branch/main/graph/badge.svg?token=BQWB1QKJ3Q)](https://codecov.io/gh/oceanmodeling/StormEvents)
[![version](https://img.shields.io/pypi/v/StormEvents)](https://pypi.org/project/StormEvents)
[![license](https://img.shields.io/github/license/oceanmodeling/StormEvents)](https://opensource.org/licenses/gpl-license)
[![style](https://img.shields.io/badge/code%20style-black-black)](https://github.com/psf/black)

`stormevents` provides Python interfaces for observational data surrounding named storm events.

```bash
pip install stormevents
```

Full documentation can be found at https://stormevents.readthedocs.io

## Usage

There are two ways to retrieve observational data via `stormevents`;

1. retrieve data for any arbitrary time interval / region, or
2. retrieve data surrounding a specific storm.

### retrieve data for any arbitrary time interval / region

`stormevents` currently implements retrieval for

- storm tracks from the National Hurricane Center (NHC),
- high-water mark (HWM) surveys provided by the United States Geological Survey (USGS), and
- data products from the Center for Operational Oceanographic Products and Services (CO-OPS).

#### storm tracks from the National Hurricane Center (NHC)

The [National Hurricane Center (NHC)](https://www.nhc.noaa.gov) tracks and tropical cyclones dating back to 1851.

The `nhc_storms()` function provides a list of NHC storms from their online archive:

```python
from stormevents.nhc import nhc_storms

nhc_storms()
```

```
name class year basin number source start_date end_date
nhc_code
AL021851 UNNAMED HU 1851 AL 2 ARCHIVE 1851-07-05 12:00:00 1851-07-05 12:00:00
AL031851 UNNAMED TS 1851 AL 3 ARCHIVE 1851-07-10 12:00:00 1851-07-10 12:00:00
AL041851 UNNAMED HU 1851 AL 4 ARCHIVE 1851-08-16 00:00:00 1851-08-27 18:00:00
AL051851 UNNAMED TS 1851 AL 5 ARCHIVE 1851-09-13 00:00:00 1851-09-16 18:00:00
AL061851 UNNAMED TS 1851 AL 6 ARCHIVE 1851-10-16 00:00:00 1851-10-19 18:00:00
... ... ... ... ... ... ... ... ...
CP902021 INVEST LO 2021 CP 90 METWATCH 2021-07-24 12:00:00 NaT
CP912021 INVEST DB 2021 CP 91 METWATCH 2021-08-07 18:00:00 NaT
EP922021 INVEST DB 2021 EP 92 METWATCH 2021-06-05 06:00:00 NaT
EP712022 GENESIS001 DB 2022 EP 71 GENESIS 2022-01-20 12:00:00 NaT
EP902022 INVEST LO 2022 EP 90 METWATCH 2022-01-20 12:00:00 NaT

[2714 rows x 8 columns]
```

##### retrieve storm track by NHC code

```python
from stormevents.nhc import VortexTrack

track = VortexTrack('AL112017')
track.data
```

```
basin storm_number datetime advisory_number ... isowave_radius_for_SWQ extra_values geometry track_start_time
0 AL 11 2017-08-30 00:00:00 ... NaN POINT (-26.90000 16.10000) 2017-08-30
1 AL 11 2017-08-30 06:00:00 ... NaN POINT (-28.30000 16.20000) 2017-08-30
2 AL 11 2017-08-30 12:00:00 ... NaN POINT (-29.70000 16.30000) 2017-08-30
3 AL 11 2017-08-30 18:00:00 ... NaN POINT (-30.80000 16.30000) 2017-08-30
4 AL 11 2017-08-30 18:00:00 ... NaN POINT (-30.80000 16.30000) 2017-08-30
.. ... ... ... ... ... ... ... ... ...
168 AL 11 2017-09-12 12:00:00 ... NaN POINT (-86.90000 33.80000) 2017-08-30
169 AL 11 2017-09-12 18:00:00 ... NaN POINT (-88.10000 34.80000) 2017-08-30
170 AL 11 2017-09-13 00:00:00 ... NaN POINT (-88.90000 35.60000) 2017-08-30
171 AL 11 2017-09-13 06:00:00 ... NaN POINT (-89.50000 36.20000) 2017-08-30
172 AL 11 2017-09-13 12:00:00 ... NaN POINT (-90.10000 36.80000) 2017-08-30

[173 rows x 38 columns]
```

##### retrieve storm track by name and year

If you do not know the storm code, you can input the storm name and year:

```python
from stormevents.nhc import VortexTrack

VortexTrack.from_storm_name('irma', 2017)
```

```
VortexTrack('AL112017', Timestamp('2017-08-30 00:00:00'), Timestamp('2017-09-13 12:00:00'), , [], None)
```

##### specify storm track file deck

By default, `VortexTrack` retrieves data from the `BEST` track file deck (`b`). You can specify that you want
the `ADVISORY` (`a`) or `FIXED` (`f`) file decks with the `file_deck` parameter.

```python
from stormevents.nhc import VortexTrack

track = VortexTrack('AL112017', file_deck='a')
track.data
```

```
basin storm_number datetime advisory_number ... isowave_radius_for_SWQ extra_values geometry track_start_time
0 AL 11 2017-08-27 06:00:00 01 ... NaN POINT (-17.40000 11.70000) 2017-08-28 06:00:00
1 AL 11 2017-08-27 12:00:00 01 ... NaN POINT (-17.90000 11.80000) 2017-08-28 06:00:00
2 AL 11 2017-08-27 18:00:00 01 ... NaN POINT (-18.40000 11.90000) 2017-08-28 06:00:00
3 AL 11 2017-08-28 00:00:00 01 ... NaN POINT (-19.00000 12.00000) 2017-08-28 06:00:00
4 AL 11 2017-08-28 06:00:00 01 ... NaN POINT (-19.50000 12.00000) 2017-08-28 06:00:00
... ... ... ... ... ... ... ... ... ...
10739 AL 11 2017-09-12 00:00:00 03 ... NaN POINT (-84.40000 31.90000) 2017-09-12 00:00:00
10740 AL 11 2017-09-12 03:00:00 03 ... NaN POINT (-84.90000 32.40000) 2017-09-12 00:00:00
10741 AL 11 2017-09-12 12:00:00 03 ... NaN POINT (-86.40000 33.80000) 2017-09-12 00:00:00
10742 AL 11 2017-09-13 00:00:00 03 ... NaN POINT (-88.20000 35.20000) 2017-09-12 00:00:00
10743 AL 11 2017-09-13 12:00:00 03 ... NaN POINT (-88.60000 36.40000) 2017-09-12 00:00:00

[10434 rows x 38 columns]
```

##### read storm track from file

If you have an ATCF or `fort.22` file, use the corresponding methods:

```python
from stormevents.nhc import VortexTrack

VortexTrack.from_file('tests/data/input/test_vortex_track_from_file/AL062018.dat')
```

```
VortexTrack('AL062018', Timestamp('2018-08-30 06:00:00'), Timestamp('2018-09-18 12:00:00'), None, , ['BEST', 'OFCL', 'OFCP', 'HMON', 'CARQ', 'HWRF'], PosixPath('/home/zrb/Projects/StormEvents/tests/data/input/test_vortex_track_from_file/AL062018.dat'))
```

```python
from stormevents.nhc import VortexTrack

VortexTrack.from_file('tests/data/input/test_vortex_track_from_file/irma2017_fort.22')
```

```
VortexTrack('AL112017', Timestamp('2017-09-05 00:00:00'), Timestamp('2017-09-12 00:00:00'), None, , ['BEST', 'OFCL', 'OFCP', 'HMON', 'CARQ', 'HWRF'], PosixPath('/home/zrb/Projects/StormEvents/tests/data/input/test_vortex_track_from_file/irma2017_fort.22'))
```

##### write storm track to `fort.22` file

```python
from stormevents.nhc import VortexTrack

track = VortexTrack.from_storm_name('florence', 2018)
track.to_file('fort.22')
```

#### high-water mark (HWM) surveys provided by the United States Geological Survey (USGS)

The [United States Geological Survey (USGS)](https://www.usgs.gov)
conducts surveys of flooded areas following flood events to determine the highest level of water elevation, and provides the
results of these surveys via their API.

##### list flood events defined by the USGS that have HWM surveys

```python
from stormevents.usgs import usgs_flood_events

usgs_flood_events()
```

```
name year description ... last_updated_by start_date end_date
usgs_id ...
7 FEMA 2013 exercise 2013 Ardent/Sentry 2013 FEMA Exercise ... NaN 2013-05-15 04:00:00 2013-05-23 04:00:00
8 Wilma 2005 Category 3 in west FL. \nHurricane Wilma was t... ... NaN 2005-10-20 00:00:00 2005-10-31 00:00:00
9 Midwest Floods 2011 2011 Spring and summer 2011 flooding of the Mississ... ... 35.0 2011-02-01 06:00:00 2011-08-30 05:00:00
10 2013 - June PA Flood 2013 Localized summer rain, small scale event ... NaN 2013-06-23 00:00:00 2013-07-01 00:00:00
11 Colorado 2013 Front Range Flood 2013 A large prolonged precipitation event resulted... ... 35.0 2013-09-12 05:00:00 2013-09-24 05:00:00
... ... ... ... ... ... ... ...
312 2021 Tropical Cyclone Ida 2021 NaN ... 864.0 2021-08-27 05:00:00 2021-09-03 05:00:00
313 Chesapeake Bay - October 2021 2021 Coastal-flooding event in the Chesapeake Bay. ... 406.0 2021-10-28 04:00:00 NaT
314 2021 November Flooding Washington State 2021 Atmospheric River Flooding ... 864.0 2021-11-08 06:00:00 2021-11-19 06:00:00
315 Washington Coastal Winter 2021-2022 2021 NaN ... 864.0 2021-11-01 05:00:00 2022-06-30 05:00:00
317 2022 Hunga Tonga-Hunga Haapai tsunami 2022 ... 1.0 2022-01-14 05:00:00 2022-01-18 05:00:00

[293 rows x 11 columns]
```

##### retrieve HWM survey data for any flood event

```python
from stormevents.usgs import USGS_Event

flood = USGS_Event(182)
flood.high_water_marks()
```

```
latitude longitude eventName hwmTypeName ... hwm_uncertainty hwm_notes siteZone geometry
hwm_id ...
22602 31.170642 -81.428402 Irma September 2017 Debris ... NaN NaN NaN POINT (-81.42840 31.17064)
22605 31.453850 -81.362853 Irma September 2017 Seed line ... 0.1 NaN NaN POINT (-81.36285 31.45385)
22612 30.720000 -81.549440 Irma September 2017 Seed line ... NaN There is a secondary peak around 5.5 ft, so th... NaN POINT (-81.54944 30.72000)
22636 32.007730 -81.238270 Irma September 2017 Seed line ... 0.1 Trimble R8 used to establish TBM. Levels ran f... NaN POINT (-81.23827 32.00773)
22653 31.531078 -81.358894 Irma September 2017 Seed line ... NaN NaN NaN POINT (-81.35889 31.53108)
... ... ... ... ... ... ... ... ... ...
26171 18.470402 -66.246631 Irma September 2017 Debris ... 0.5 NaN NaN POINT (-66.24663 18.47040)
26173 18.470300 -66.449900 Irma September 2017 Debris ... 0.5 levels from GNSS BM NaN POINT (-66.44990 18.47030)
26175 18.463954 -66.140869 Irma September 2017 Debris ... 0.5 levels from GNSS BM NaN POINT (-66.14087 18.46395)
26177 18.488720 -66.392160 Irma September 2017 Debris ... 0.5 levels from GNSS BM NaN POINT (-66.39216 18.48872)
26179 18.005607 -65.871768 Irma September 2017 Debris ... 0.5 levels from GNSS BM NaN POINT (-65.87177 18.00561)

[506 rows x 53 columns]
```

```python
from stormevents.usgs import USGS_Event

flood = USGS_Event(182)
flood.high_water_marks(quality=['EXCELLENT', 'GOOD'])
```

```
latitude longitude eventName hwmTypeName ... hwm_notes peak_summary_id siteZone geometry
hwm_id ...
22605 31.453850 -81.362853 Irma September 2017 Seed line ... NaN NaN NaN POINT (-81.36285 31.45385)
22612 30.720000 -81.549440 Irma September 2017 Seed line ... There is a secondary peak around 5.5 ft, so th... NaN NaN POINT (-81.54944 30.72000)
22636 32.007730 -81.238270 Irma September 2017 Seed line ... Trimble R8 used to establish TBM. Levels ran f... NaN NaN POINT (-81.23827 32.00773)
22674 32.030907 -80.900605 Irma September 2017 Seed line ... NaN 5042.0 NaN POINT (-80.90061 32.03091)
22849 30.741940 -81.687780 Irma September 2017 Debris ... NaN 4834.0 NaN POINT (-81.68778 30.74194)
... ... ... ... ... ... ... ... ... ...
25150 30.038222 -81.880928 Irma September 2017 Seed line ... GNSS Level II survey. NaN NaN POINT (-81.88093 30.03822)
25151 30.118110 -81.760220 Irma September 2017 Seed line ... GNSS Level III survey. NaN NaN POINT (-81.76022 30.11811)
25158 29.720560 -81.506110 Irma September 2017 Seed line ... GNSS Level II survey. NaN NaN POINT (-81.50611 29.72056)
25159 30.097514 -81.794375 Irma September 2017 Seed line ... GNSS Level III survey. NaN NaN POINT (-81.79438 30.09751)
25205 29.783890 -81.263060 Irma September 2017 Seed line ... GNSS Level II survey. NaN NaN POINT (-81.26306 29.78389)

[277 rows x 53 columns]
```

### retrieve data surrounding a specific storm

The `StormEvent` class provides an interface to retrieve data within the time interval and spatial bounds of a specific storm
event.

You can create a new `StormEvent` object from a storm name and year,

```python
from stormevents import StormEvent

StormEvent('FLORENCE', 2018)
```

```
StormEvent(name='FLORENCE', year=2018, start_date=Timestamp('2018-08-30 06:00:00'), end_date=Timestamp('2018-09-18 12:00:00'))
```

or from a storm NHC code,

```python
from stormevents import StormEvent

StormEvent.from_nhc_code('EP172016')
```

```
StormEvent(name='PAINE', year=2016, start_date=Timestamp('2016-09-18 00:00:00'), end_date=Timestamp('2016-09-21 12:00:00'))
```

or from a USGS flood event ID.

```python
from stormevents import StormEvent

StormEvent.from_usgs_id(310)
```

```
StormEvent(name='HENRI', year=2021, start_date=Timestamp('2021-08-20 18:00:00'), end_date=Timestamp('2021-08-24 12:00:00'))
```

To constrain the time interval, you can provide an absolute time range,

```python
from stormevents import StormEvent
from datetime import datetime

StormEvent('paine', 2016, start_date='2016-09-19', end_date=datetime(2016, 9, 19, 12))
```

```
StormEvent(name='PAINE', year=2016, start_date=datetime.datetime(2016, 9, 19, 0, 0), end_date=datetime.datetime(2016, 9, 19, 12, 0))
```

```python
from stormevents import StormEvent
from datetime import datetime

StormEvent('paine', 2016, end_date=datetime(2016, 9, 19, 12))
```

```
StormEvent(name='PAINE', year=2016, start_date=Timestamp('2016-09-18 00:00:00'), end_date=datetime.datetime(2016, 9, 19, 12, 0))
```

or, alternatively, you can provide relative time deltas, which will be interpreted compared to the absolute time interval
provided by the NHC.

```python
from stormevents import StormEvent
from datetime import timedelta

StormEvent('florence', 2018, start_date=timedelta(days=2)) # <- start 2 days after NHC start time
```

```
StormEvent(name='FLORENCE', year=2018, start_date=Timestamp('2018-09-01 06:00:00'), end_date=Timestamp('2018-09-18 12:00:00'))
```

```python
from stormevents import StormEvent
from datetime import timedelta

StormEvent(
'henri',
2021,
start_date=timedelta(days=-3), # <- start 3 days before NHC end time
end_date=timedelta(days=-2), # <- end 2 days before NHC end time
)
```

```
StormEvent(name='HENRI', year=2021, start_date=Timestamp('2021-08-21 12:00:00'), end_date=Timestamp('2021-08-22 12:00:00'))
```

```python
from stormevents import StormEvent
from datetime import timedelta

StormEvent('ida', 2021, end_date=timedelta(days=2)) # <- end 2 days after NHC start time
```

```
StormEvent(name='IDA', year=2021, start_date=Timestamp('2021-08-27 18:00:00'), end_date=Timestamp('2021-08-29 18:00:00'))
```

#### retrieve data for a storm

The following methods are very similar to the data getter functions detailed above. However, these methods are tied to a
specific storm event, and will focus on retrieving data within the spatial region and time interval of their specific storm
event.

##### track data from the National Hurricane Center (NHC)

```python
from stormevents import StormEvent

storm = StormEvent('florence', 2018)
storm.track()
```

```
VortexTrack('AL062018', Timestamp('2018-08-30 06:00:00'), Timestamp('2018-09-18 12:00:00'), , , [], None)
```

```python
from stormevents import StormEvent

storm = StormEvent('florence', 2018)
storm.track(file_deck='a')
```

```
VortexTrack('AL062018', Timestamp('2018-08-30 06:00:00'), Timestamp('2018-09-18 12:00:00'), , , ['OFCL', 'OFCP', 'HMON', 'CARQ', 'HWRF'], None)
```

##### high-water mark (HWM) surveys provided by the United States Geological Survey (USGS)

```python
from stormevents import StormEvent

storm = StormEvent('florence', 2018)
flood = storm.flood_event
flood.high_water_marks()
```

```
latitude longitude eventName ... siteZone peak_summary_id geometry
hwm_id ...
33496 37.298440 -80.007750 Florence Sep 2018 ... NaN NaN POINT (-80.00775 37.29844)
33497 33.699720 -78.936940 Florence Sep 2018 ... NaN NaN POINT (-78.93694 33.69972)
33498 33.758610 -78.792780 Florence Sep 2018 ... NaN NaN POINT (-78.79278 33.75861)
33499 33.641389 -78.947778 Florence Sep 2018 ... NaN POINT (-78.94778 33.64139)
33500 33.602500 -78.973889 Florence Sep 2018 ... NaN POINT (-78.97389 33.60250)
... ... ... ... ... ... ... ...
34872 35.534641 -77.038183 Florence Sep 2018 ... NaN NaN POINT (-77.03818 35.53464)
34873 35.125000 -77.050044 Florence Sep 2018 ... NaN NaN POINT (-77.05004 35.12500)
34874 35.917467 -76.254367 Florence Sep 2018 ... NaN NaN POINT (-76.25437 35.91747)
34875 35.111000 -77.037851 Florence Sep 2018 ... NaN NaN POINT (-77.03785 35.11100)
34876 35.301135 -77.264727 Florence Sep 2018 ... NaN NaN POINT (-77.26473 35.30114)

[644 rows x 53 columns]
```

##### products from the Center for Operational Oceanographic Products and Services (CO-OPS)

```python
from stormevents import StormEvent

storm = StormEvent('florence', 2018)
storm.coops_product_within_isotach('water_level', wind_speed=34, start_date='2018-09-12 14:03:00', end_date='2018-09-14')
```

```

Dimensions: (nos_id: 7, t: 340)
Coordinates:
* nos_id (nos_id) int64 8651370 8652587 8654467 ... 8658120 8658163 8661070
* t (t) datetime64[ns] 2018-09-12T14:06:00 ... 2018-09-14
nws_id (nos_id)