Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/patrikeh/go-deep
Artificial Neural Network
https://github.com/patrikeh/go-deep
backpropagation classification deep-learning golang neural-network regression
Last synced: 13 days ago
JSON representation
Artificial Neural Network
- Host: GitHub
- URL: https://github.com/patrikeh/go-deep
- Owner: patrikeh
- License: mit
- Created: 2017-12-09T15:10:06.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2024-07-11T02:51:55.000Z (4 months ago)
- Last Synced: 2024-07-31T20:52:16.100Z (3 months ago)
- Topics: backpropagation, classification, deep-learning, golang, neural-network, regression
- Language: Go
- Homepage:
- Size: 2.22 MB
- Stars: 530
- Watchers: 21
- Forks: 65
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-go - go-deep - A feature-rich neural network library in Go. (Machine Learning / Search and Analytic Databases)
- awesome-golang-ai - go-deep
- zero-alloc-awesome-go - go-deep - A feature-rich neural network library in Go. (Machine Learning / Search and Analytic Databases)
- awesome-go - go-deep - Artificial Neural Network - ★ 178 (Machine Learning)
- awesome-go-extra - go-deep - 12-09T15:10:06Z|2022-01-29T15:21:27Z| (Machine Learning / Advanced Console UIs)
- awesome-go-zh - go-deep
README
# go-deep
[![GoDoc](https://godoc.org/github.com/patrikeh/go-deep?status.svg)](https://godoc.org/github.com/patrikeh/go-deep)
[![Go Report Card](https://goreportcard.com/badge/github.com/patrikeh/go-deep)](https://goreportcard.com/report/github.com/patrikeh/go-deep)
[![CircleCI](https://circleci.com/gh/patrikeh/go-deep/tree/master.svg?style=svg)](https://circleci.com/gh/patrikeh/go-deep/tree/master)
[![codecov](https://codecov.io/gh/patrikeh/go-deep/branch/master/graph/badge.svg?token=fFCrxfhuL0)](https://codecov.io/gh/patrikeh/go-deep)Feed forward/backpropagation neural network implementation. Currently supports:
- Activation functions: sigmoid, hyperbolic, ReLU
- Solvers: SGD, SGD with momentum/nesterov, Adam
- Classification modes: regression, multi-class, multi-label, binary
- Supports batch training in parallel
- Bias nodesNetworks are modeled as a set of neurons connected through synapses. No GPU computations - don't use this for any large scale applications.
## Install
```
go get -u github.com/patrikeh/go-deep
```## Usage
Import the go-deep package
```go
import (
"fmt"
deep "github.com/patrikeh/go-deep"
"github.com/patrikeh/go-deep/training"
)
```Define some data...
```go
var data = training.Examples{
{[]float64{2.7810836, 2.550537003}, []float64{0}},
{[]float64{1.465489372, 2.362125076}, []float64{0}},
{[]float64{3.396561688, 4.400293529}, []float64{0}},
{[]float64{1.38807019, 1.850220317}, []float64{0}},
{[]float64{7.627531214, 2.759262235}, []float64{1}},
{[]float64{5.332441248, 2.088626775}, []float64{1}},
{[]float64{6.922596716, 1.77106367}, []float64{1}},
{[]float64{8.675418651, -0.242068655}, []float64{1}},
}
```Create a network with two hidden layers of size 2 and 2 respectively:
```go
n := deep.NewNeural(&deep.Config{
/* Input dimensionality */
Inputs: 2,
/* Two hidden layers consisting of two neurons each, and a single output */
Layout: []int{2, 2, 1},
/* Activation functions: Sigmoid, Tanh, ReLU, Linear */
Activation: deep.ActivationSigmoid,
/* Determines output layer activation & loss function:
ModeRegression: linear outputs with MSE loss
ModeMultiClass: softmax output with Cross Entropy loss
ModeMultiLabel: sigmoid output with Cross Entropy loss
ModeBinary: sigmoid output with binary CE loss */
Mode: deep.ModeBinary,
/* Weight initializers: {deep.NewNormal(μ, σ), deep.NewUniform(μ, σ)} */
Weight: deep.NewNormal(1.0, 0.0),
/* Apply bias */
Bias: true,
})
```Train:
```go
// params: learning rate, momentum, alpha decay, nesterov
optimizer := training.NewSGD(0.05, 0.1, 1e-6, true)
// params: optimizer, verbosity (print stats at every 50th iteration)
trainer := training.NewTrainer(optimizer, 50)training, heldout := data.Split(0.5)
trainer.Train(n, training, heldout, 1000) // training, validation, iterations
```resulting in:
```
Epochs Elapsed Error
--- --- ---
5 12.938µs 0.36438
10 125.691µs 0.02261
15 177.194µs 0.00404
...
1000 10.703839ms 0.00000
```Finally, make some predictions:
```go
fmt.Println(data[0].Input, "=>", n.Predict(data[0].Input))
fmt.Println(data[5].Input, "=>", n.Predict(data[5].Input))
```Alternatively, batch training can be performed in parallell:
```go
optimizer := NewAdam(0.001, 0.9, 0.999, 1e-8)
// params: optimizer, verbosity (print info at every n:th iteration), batch-size, number of workers
trainer := training.NewBatchTrainer(optimizer, 1, 200, 4)training, heldout := data.Split(0.75)
trainer.Train(n, training, heldout, 1000) // training, validation, iterations
```## Examples
See `training/trainer_test.go` for a variety of toy examples of regression, multi-class classification, binary classification, etc.
See `examples/` for more realistic examples:
| Dataset | Topology | Epochs | Accuracy |
| ------- | -------- | ------ | -------- |
| wines | [5 5] | 10000 | ~98% |
| mnist | [50] | 25 | ~97% |