Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/pengzhangzhi/Awesome-Mamba

Awesome list of papers that extend Mamba to various applications.
https://github.com/pengzhangzhi/Awesome-Mamba

List: Awesome-Mamba

Last synced: 3 months ago
JSON representation

Awesome list of papers that extend Mamba to various applications.

Awesome Lists containing this project

README

        

# Awesome-Mamba
Awesome list of Mamba papers, theory, and applications!

Please issue/pr if you have any updates :)
## Mamba
[Mamba](https://github.com/state-spaces/mamba) is a new state-space model architecture showing promising performance on language modeling with O(N) complexity.

[mamba.py 🐍 : a simple and efficient Mamba implementation](https://github.com/alxndrTL/mamba.py)

[Mamba-jax](https://github.com/vvvm23/mamba-jax)

[Mamba-minimal-pytorch](https://github.com/johnma2006/mamba-minimal)

[Mamba-minimal-in-JAX](https://github.com/radarFudan/mamba-minimal-jax)

[Mamba.c: inference of Mamba models in C and CUDA](https://github.com/kroggen/mamba.c)

## Computer Vision

[PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition](https://arxiv.org/abs/2403.17695)

[Efficient Visual Representation Learning with Bidirectional State Space Model](https://github.com/hustvl/Vim)

[MambaMorph: a Mamba-based Backbone with Contrastive Feature Learning for Deformable MR-CT Registration](https://github.com/Guo-Stone/MambaMorph)

[Vivim: a Video Vision Mamba for Medical Video Object Segmentation](https://github.com/scott-yjyang/Vivim)

[SegMamba: Long-range Sequential Modeling Mamba For 3D Medical Image Segmentation](https://github.com/ge-xing/SegMamba)

[VMamba: Visual State Space Model](https://github.com/MzeroMiko/VMamba)

[U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation](https://github.com/bowang-lab/U-Mamba)

[Swin-UMamba](https://github.com/JiarunLiu/Swin-UMamba)

[VM-UNet](https://github.com/JCruan519/VM-UNet)

[ZigMa (ECCV 2024)](https://taohu.me/zigma/)

[I2I-Mamba: Multi-modal Medical Image Synthesis via Selective State Space Modeling](https://arxiv.org/abs/2405.14022) [[code](https://github.com/icon-lab/I2I-Mamba)]

[SUM: Saliency Unification through Mamba for Visual Attention Modeling](https://arxiv.org/abs/2406.17815) [[code](https://github.com/Arhosseini77/SUM)]

## NLP

[MambaByte: Token-free Selective State Space Model](https://github.com/kyegomez/MambaByte)

[MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts](https://arxiv.org/abs/2401.04081)

[BlackMamba: Mixture of Experts for State-Space Models](https://static1.squarespace.com/static/658ded386c43c219ee47caba/t/65bd73200920d050ccbac40c/1706914594353/blackMamba.pdf)

[ClinicalMamba: A Generative Clinical Language Model on Longitudinal Clinical Notes](https://arxiv.org/abs/2403.05795)

[Repeat After Me: Transformers are Better than State Space Models at Copying](https://arxiv.org/pdf/2402.01032.pdf)

[Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks](https://arxiv.org/pdf/2402.04248.pdf)

[LOCOST: State-Space Models for Long Document Abstractive Summarization](https://arxiv.org/abs/2401.17919)

## Graph

[Graph-Mamba: Towards Long-Range Graph Sequence Modeling with Selective State Spaces](https://github.com/bowang-lab/Graph-Mamba)

[Graph Mamba: Towards Learning on Graphs with State Space Models](https://arxiv.org/abs/2402.08678)

## Theory

[Universality-1](https://arxiv.org/abs/2309.13414)

[Universality-2](https://arxiv.org/abs/2307.11888)

[StableSSM](http://arxiv.org/abs/2311.14495)

[Generalization](https://openreview.net/forum?id=EGjvMcKrrl&noteId=eWRltAW3XY)

## Medical Imaging

- [Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis](https://arxiv.org/abs/2406.03430) [[Github](https://github.com/xmindflow/Awesome_Mamba)]

## Acknowledgement

- [@alxndrTL](https://github.com/alxndrTL)
- [@GianlucaMancusi](https://github.com/GianlucaMancusi)