Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pkmital/tensorflow_tutorials
From the basics to slightly more interesting applications of Tensorflow
https://github.com/pkmital/tensorflow_tutorials
Last synced: 5 days ago
JSON representation
From the basics to slightly more interesting applications of Tensorflow
- Host: GitHub
- URL: https://github.com/pkmital/tensorflow_tutorials
- Owner: pkmital
- License: other
- Created: 2016-02-03T04:01:40.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2021-12-11T20:54:51.000Z (about 3 years ago)
- Last Synced: 2025-01-16T21:03:23.258Z (12 days ago)
- Language: Jupyter Notebook
- Size: 122 MB
- Stars: 5,639
- Watchers: 238
- Forks: 1,180
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- awesome-tensorflow - TensorFlow Tutorial 1 - From the basics to slightly more interesting applications of TensorFlow (Tutorials)
- Awesome-TensorFlow-Chinese - TensorFlow Tutorial - 从基础知识到有趣的 tensorflow 应用 (教程 / 微信群)
- awesome-tensorflow - TensorFlow Tutorial 1 - From the basics to slightly more interesting applications of TensorFlow (Tutorials)
- fucking-awesome-tensorflow - TensorFlow Tutorial 1 - From the basics to slightly more interesting applications of TensorFlow (Tutorials)
README
# TensorFlow Tutorials
You can find python source code under the `python` directory, and associated notebooks under `notebooks`.
| | Source code | Description |
| --- | --- | --- |
|1| **[basics.py](python/01_basics.py)** | Setup with tensorflow and graph computation.|
|2| **[linear_regression.py](python/02_linear_regression.py)** | Performing regression with a single factor and bias. |
|3| **[polynomial_regression.py](python/03_polynomial_regression.py)** | Performing regression using polynomial factors.|
|4| **[logistic_regression.py](python/04_logistic_regression.py)** | Performing logistic regression using a single layer neural network.|
|5| **[basic_convnet.py](python/05_basic_convnet.py)** | Building a deep convolutional neural network.|
|6| **[modern_convnet.py](python/06_modern_convnet.py)** | Building a deep convolutional neural network with batch normalization and leaky rectifiers.|
|7| **[autoencoder.py](python/07_autoencoder.py)** | Building a deep autoencoder with tied weights.|
|8| **[denoising_autoencoder.py](python/08_denoising_autoencoder.py)** | Building a deep denoising autoencoder which corrupts the input.|
|9| **[convolutional_autoencoder.py](python/09_convolutional_autoencoder.py)** | Building a deep convolutional autoencoder.|
|10| **[residual_network.py](python/10_residual_network.py)** | Building a deep residual network.|
|11| **[variational_autoencoder.py](python/11_variational_autoencoder.py)** | Building an autoencoder with a variational encoding.|# Installation Guides
* [TensorFlow Installation](https://github.com/tensorflow/tensorflow)
* [OS specific setup](https://github.com/tensorflow/tensorFlow/blob/master/tensorflow/g3doc/get_started/os_setup.md)
* [Installation on EC2 GPU Instances](http://eatcodeplay.com/installing-gpu-enabled-tensorflow-with-python-3-4-in-ec2/)For Ubuntu users using python3.4+ w/ CUDA 7.5 and cuDNN 7.0, you can find compiled wheels under the `wheels` directory. Use `pip3 install tensorflow-0.8.0rc0-py3-none-any.whl` to install, e.g. and be sure to add: `export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
` to your `.bashrc`. Note, this still requires you to install CUDA 7.5 and cuDNN 7.0 under `/usr/local/cuda`.# Resources
* [Official Tensorflow Tutorials](https://www.tensorflow.org/versions/r0.7/tutorials/index.html)
* [Tensorflow API](https://www.tensorflow.org/versions/r0.7/api_docs/python/index.html)
* [Tensorflow Google Groups](https://groups.google.com/a/tensorflow.org/forum/#!forum/discuss)
* [More Tutorials](https://github.com/nlintz/TensorFlow-Tutorials)# Author
Parag K. Mital, Jan. 2016.
http://pkmital.com
# License
See LICENSE.md