Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rkyuca/awesome-video-segmentation
Awesome Video Segmentation: Recent progress in video segmentation
https://github.com/rkyuca/awesome-video-segmentation
List: awesome-video-segmentation
Last synced: 16 days ago
JSON representation
Awesome Video Segmentation: Recent progress in video segmentation
- Host: GitHub
- URL: https://github.com/rkyuca/awesome-video-segmentation
- Owner: rkyuca
- License: apache-2.0
- Created: 2023-07-24T22:56:41.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-09-08T23:17:53.000Z (over 1 year ago)
- Last Synced: 2024-04-21T09:09:38.143Z (8 months ago)
- Size: 25.4 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-video-segmentation - Awesome Video Segmentation: Recent progress in video segmentation. (Other Lists / PowerShell Lists)
README
# Awesome Video Segmentation
A list of some recent papers on different types of video segmentation tasks.
### Updates
- [x] Tasks and datasets
- [x] Recent papers list
- [x] List of papers
- [x] Links to papers and codes
- [ ] SOTA result tables on various datasets
- [ ] Discussion on recent trends
- [ ] Potential future directions## Contents
> 0\. [Tasks and Datasets](#Tasks-and-Datasets)
>
> 1\. [Automatic Video Object Segmentation](#Automatic-Video-Object-Segmentation)
>
> 2\. [Semi Automatic Video Object Segmentation](#Semi-Automatic-Video-Object-Segmentation)
>
> 3\. [Interactive Video Object Segmentation](#Interactive-Video-Object-Segmentation)
>
> 4\. [Video Instance Segmentation](#Video-Instance-Segmentation)
>
> 5\. [Actor Action Segmentation](#[Actor-Action-Segmentation)
>
> 6\. [Video Semantic Segmentation](#Video-Semantic-Segmentation)
>
> 7\. [Video Panoptic Segmentation](#Video-Panoptic-Segmentation)
>
> 8\. [Depth Aware Video Panoptic Segmentation](#Depth-Aware-Video-Panoptic-Segmentation)
>
> 9\. [Panoramic Video Panoptic Segmentation](#Panoramic-Video-Panoptic-Segmentation)
>
> 10\. [Text Referring Video Object Segmentation](#Text-Referring-Video-Object-Segmentation)
>
> 11\. [Audio Referring Video Object Segmentation](#Audio-Referring-Video-Object-Segmentation)## Tasks and Datasets
| Task Category | Task | Target | Instances | Tracking | Datasets |
|-----------------------------|-------------------------------------------------------------|---------------------------------------|--------------------|--------------------|------------------------------------------------|
| Objects | Automatic Video Object Segmentation (AVOS) | Primary moving object | - | - | DAVIS 2016, MoCA, YouTube-VOS, YouTube-Objects |
| | Semi-automatic VOS (SVOS) | Mask-guided object | - | - | DAVIS'2017 |
| | Interactive VOS (IVOS) | Scribble-guided object | - | - | DAVIS'2017 |
| | Video Instance Segmentation (VIS) | All Objects | :heavy_check_mark: | :heavy_check_mark: | YouTube-VIS, OVIS |
| Actor-action | Actor-action segmentation | Primary Object related to actions | - | - | A2D |
| Scene | Video Semantic Segmentation/ Video Scene Parsing (VSS/ VSP) | All thing and stuff classes | - | - | VIPER, VSPW |
| | Video Panoptic Segmentation (VPS) | All thing and stuff classes | :heavy_check_mark: | :heavy_check_mark: | Cityscapes-VPS, VIPER, VIPSeg |
| | Depth-aware Video Panoptic Segmentation (DVPS) | All thing and stuff classes and depth | :heavy_check_mark: | :heavy_check_mark: | Cityscapes-DVPS, SemanticKITTI-DVPS |
| | Panoramic Video Panoptic Segmentation (PVPS) | All thing and stuff classes | :heavy_check_mark: | :heavy_check_mark: | WOD:PVPS |
| Multimodal | Text Referring VOS/Referring-VOS (RVOS) | Text reference guided object | - | - | A2D-Sentence, RE-DAVIS, RVOS |
| | Audio Referring VOS (ARVOS) | Audio reference guided object | - | - | AVOS |## Automatic Video Object Segmentation
- **[MED-VT]** MED-VT: Multiscale encoder-decoder video transformer with application to object segmentation. *CVPR 2023*, [Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Karim_MED-VT_Multiscale_Encoder-Decoder_Video_Transformer_With_Application_To_Object_Segmentation_CVPR_2023_paper.pdf) [Code](https://rkyuca.github.io/medvt/)
- **[PMN]** Unsupervised video object segmentation via prototype memory network. *WACV 2023*, [Paper](https://openaccess.thecvf.com/content/WACV2023/papers/Lee_Unsupervised_Video_Object_Segmentation_via_Prototype_Memory_Network_WACV_2023_paper.pdf)
- **[TMO]** Treating motion as option to reduce motion dependency in unsupervised video object segmentation. *WACV 2023*, [Paper](https://openaccess.thecvf.com/content/WACV2023/papers/Cho_Treating_Motion_as_Option_To_Reduce_Motion_Dependency_in_Unsupervised_WACV_2023_paper.pdf)
- **[HFAN]** Hierarchical feature alignment network for unsupervised video object segmentation. *ECCV 2022*, [Paper](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136940584.pdf), [Code](https://github.com/NUST-Machine-Intelligence-Laboratory/HFAN)
- **[IMP]** Iteratively selecting an easy reference frame makes unsupervised video object segmentation easier. *AAAI 2022*, [Paper](https://arxiv.org/abs/2112.12402)
- **[RTNet]** Reciprocal transformations for unsupervised video object segmentation. *CVPR 2021*, [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Ren_Reciprocal_Transformations_for_Unsupervised_Video_Object_Segmentation_CVPR_2021_paper.pdf), [Code](https://github.com/OliverRensu/RTNet)
- **[MATNet]** Motionattentive transition for zero-shot video object segmentation. *AAAI 2020*, [Paper](https://arxiv.org/pdf/2003.04253.pdf), [Code](https://github.com/tfzhou/MATNet)
- **[COSNet]** See more,know more: Unsupervised video object segmentation with co-attention Siamese networks. *CVPR 2019*, [Paper](https://openaccess.thecvf.com/content_CVPR_2019/papers/Lu_See_More_Know_More_Unsupervised_Video_Object_Segmentation_With_Co-Attention_CVPR_2019_paper.pdf), [Code](https://github.com/carrierlxk/COSNet)## Semi Automatic Video Object Segmentation
- **[PCVOS]** Per-clip video object segmentation. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Park_Per-Clip_Video_Object_Segmentation_CVPR_2022_paper.pdf), [Code](https://github.com/pkyong95/PCVOS)
- **[AOT]** Associating objects with transformers for video object segmentation. *NeurIPS 2021*, [Paper](https://openreview.net/pdf?id=hl3v8io3ZYt)
- **[CFBI+]** Collaborative video object segmentation by multiscale foreground-background integration. *PAMI 2021*, [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9435058), [Code](https://github.com/z-x-yang/CFBI)
- **[SST]** SSTVOS: Sparse spatiotemporal transformers for video object segmentation. *CVPR 2021*, [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Duke_SSTVOS_Sparse_Spatiotemporal_Transformers_for_Video_Object_Segmentation_CVPR_2021_paper.pdf), [Code](https://github.com/dukebw/SSTVOS)
- **[STCN]** Rethinking space-time networks with improved memory coverage for efficient video object segmentation. *NeurIPS 2021*, [Paper](https://openreview.net/pdf?id=vllRjSTWcLs), [Code](https://github.com/hkchengrex/STCN)
- **[HMMN]** Hierarchical memory matching network for video object segmentation. *ICCV 2021*, [Paper](https://openaccess.thecvf.com/content/ICCV2021/papers/Seong_Hierarchical_Memory_Matching_Network_for_Video_Object_Segmentation_ICCV_2021_paper.pdf), [Code](https://github.com/Hongje/HMMN)
- **[KMN]** Kernelized memory network for video object segmentation. *ECCV 2020*, [Paper](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123670630.pdf)## Interactive Video Object Segmentation
- **[MiVOS]** Modular interactive video object segmentation: Interaction-to-mask, propagation and difference-aware fusion. *CVPR 2021*, [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Cheng_Modular_Interactive_Video_Object_Segmentation_Interaction-to-Mask_Propagation_and_Difference-Aware_Fusion_CVPR_2021_paper.pdf), [Code](https://github.com/hkchengrex/MiVOS)
- **[GIS]** Guided interactive video object segmentation using reliability-based attention maps. *CVPR 2021*, [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Heo_Guided_Interactive_Video_Object_Segmentation_Using_Reliability-Based_Attention_Maps_CVPR_2021_paper.pdf), [Code](https://github.com/yuk6heo/GIS-RAmap)
- **[ATNet]** Interactive video object segmentation using global and local transfer modules. *ECCV 2020*, [Paper](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123620290.pdf), [Code](https://github.com/yuk6heo/IVOS-ATNet)
- **[MANet]** Memory aggregation networks for efficient interactive video object segmentation. *CVPR 2020*, [Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Miao_Memory_Aggregation_Networks_for_Efficient_Interactive_Video_Object_Segmentation_CVPR_2020_paper.pdf), [Code](https://github.com/lightas/CVPR2020_MANet)
- **[IPNet]** Fast user-guided video object segmentation by interaction-and-propagation networks. *CVPR 2019*, [Paper](https://openaccess.thecvf.com/content_CVPR_2019/papers/Oh_Fast_User-Guided_Video_Object_Segmentation_by_Interaction-And-Propagation_Networks_CVPR_2019_paper.pdf), [Code](https://github.com/seoungwugoh/ivs-demo)## Video Instance Segmentation
| Methods | Transformer-based | YouTube-VIS-2019 | YouTube-VIS-2021 | OVIS | UVO |
|---------------------|--------------------|--------------------|------------------|----------|----------|
| CrossVIS | \- | 36.6 | 34.2 | 14.9 | \- |
| VisTR | | 40.1 | \- | \- | \- |
| IFC | | 42.6 | 35.2 | \- | \- |
| Seq Mask R-CNN | \- | 47.6 | \- | \- | \- |
| EfficientVIS | | 39.8 | \- | \- | \- |
| TeViT | | 46.6 | 37.9 | 17.4 | \- |
| SeqFormer | | 59.3 | \- | \- | \- |
| TubeFormer-DeepLab | | 47.5 | 41.2 | \- | \- |
| Video K-Net | | 51.4 | \- | \- | \- |
| FreeSOLO | \- | \- | \- | \- | 4.8 |
| IDOL | | 62.2 | 56.1 | 42.6 | \- |
| VMT | | 59.7 | \- | 19.8 | \- |
| MS-STS VIS | | 61.0 | \- | \- | \- |
| InstMove | | \- | \- | 30.7 | \- |
| GenVIS | | **64.0** | **59.6** | **45.4** | \- |
| CAROQ | | 61.4 | 54.5 | 38.2 | \- |
| CutLER | | \- | \- | \- | **10.1** |- **[CutLER]** Cut and learn for unsupervised object detection and instance segmentation. *CVPR 2023*, [Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_Cut_and_Learn_for_Unsupervised_Object_Detection_and_Instance_Segmentation_CVPR_2023_paper.pdf), [Code](https://github.com/facebookresearch/CutLER)
- **[CAROQ]** Context-aware relative object queries to unify video instance and panoptic segmentation. *CVPR 2023*, [Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Choudhuri_Context-Aware_Relative_Object_Queries_To_Unify_Video_Instance_and_Panoptic_CVPR_2023_paper.pdf), [Code](https://github.com/AnwesaChoudhuri/CAROQ)
- **[GenVIS]** A generalized framework for video instance segmentation. *CVPR 2023*, [Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Heo_A_Generalized_Framework_for_Video_Instance_Segmentation_CVPR_2023_paper.pdf), [Code](https://github.com/miranheo/GenVIS)
- **[InstMove]** InstMove: Instance motion for object-centric video segmentation. *CVPR 2023*, [Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Liu_InstMove_Instance_Motion_for_Object-Centric_Video_Segmentation_CVPR_2023_paper.pdf), [Code](https://github.com/wjf5203/VNext)
- **[MS-STS VIS]** Video instance segmentation via multi-scale spatio-temporal split attention transformer. *ECCV 2022*, [Paper](https://arxiv.org/pdf/2203.13253.pdf), [Code](https://github.com/OmkarThawakar/MSSTS-VIS)
- **[VMT]** Video mask transfiner for high-quality video instance segmentation. *ECCV 2022*, [Paper](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136880721.pdf), [Code](https://github.com/SysCV/vmt)
- **[IDOL]** In defense of online models for video instance segmentation. *ECCV 2022*, [Paper](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136880582.pdf), [Code](https://github.com/wjf5203/VNext)
- **[FreeSOLO ]** FreeSOLO: Learning to segment objects without annotations. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_FreeSOLO_Learning_To_Segment_Objects_Without_Annotations_CVPR_2022_paper.pdf), [Code](https://github.com/NVlabs/FreeSOLO)
- **[Video K-Net]** Video K-Net: A simple, strong, and unified baseline for video segmentation. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Li_Video_K-Net_A_Simple_Strong_and_Unified_Baseline_for_Video_CVPR_2022_paper.pdf), [Code](https://github.com/lxtGH/Video-K-Net)
- **[TubeFormer-DeepLab]** TubeFormer-DeepLab: Video mask transformer. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Kim_TubeFormer-DeepLab_Video_Mask_Transformer_CVPR_2022_paper.pdf), [Code]()
- **[SeqFormer]** SeqFormer: Sequential transformer for video instance segmentation. *ECCV 2022*, [Paper](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136880547.pdf), [Code](https://github.com/wjf5203/SeqFormer)
- **[TeViT]** Temporally efficient vision transformer for video instance segmentation. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Yang_Temporally_Efficient_Vision_Transformer_for_Video_Instance_Segmentation_CVPR_2022_paper.pdf), [Code](https://github.com/hustvl/TeViT)
- **[EfficientVIS]** Efficient video instance segmentation via tracklet query and proposal. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Wu_Efficient_Video_Instance_Segmentation_via_Tracklet_Query_and_Proposal_CVPR_2022_paper.pdf), [Code]()
- **[Seq Mask R-CNN]** Video instance segmentation with a propose-reduce paradigm. *ICCV 2021*, [Paper](https://openaccess.thecvf.com/content/ICCV2021/papers/Lin_Video_Instance_Segmentation_With_a_Propose-Reduce_Paradigm_ICCV_2021_paper.pdf), [Code](https://github.com/dvlab-research/ProposeReduce)
- **[IFC]** Video instance segmentation using inter-frame communication transformers. *NeurIPS 2021*, [Paper](https://proceedings.neurips.cc/paper/2021/file/6f2688a5fce7d48c8d19762b88c32c3b-Paper.pdf), [Code](https://github.com/sukjunhwang/IFC)
- **[VisTR]** End-to-end video instance segmentation with transformers. *CVPR 2021*, [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_End-to-End_Video_Instance_Segmentation_With_Transformers_CVPR_2021_paper.pdf), [Code](https://github.com/Epiphqny/VisTR)
- **[CrossVIS]** Crossover learning for fast online video instance segmentation. *ICCV 2021*, [Paper](https://openaccess.thecvf.com/content/ICCV2021/papers/Yang_Crossover_Learning_for_Fast_Online_Video_Instance_Segmentation_ICCV_2021_paper.pdf), [Code](https://github.com/hustvl/CrossVIS)## Actor Action Segmentation
| Methods | Transformer-based | A2D |
|-------------|-------------------|----------|
| Ji et al. | - | 36.9 |
| Dang et al. | - | 38.6 |
| SSA2D | - | 39.5 |
| MED-VT | | **52.6** |- **[MED-VT]** MED-VT: Multiscale encoder-decoder video transformer with application to object segmentation. *CVPR 2023*, [Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Karim_MED-VT_Multiscale_Encoder-Decoder_Video_Transformer_With_Application_To_Object_Segmentation_CVPR_2023_paper.pdf) [Code](https://rkyuca.github.io/medvt/)
- **[SSA2D]** We don’t need thousand proposals: Single shot actor action detection in videos. *WACV 2021 *, [Paper](https://openaccess.thecvf.com/content/WACV2021/papers/Rana_We_Dont_Need_Thousand_Proposals_Single_Shot_Actor-Action_Detection_in_WACV_2021_paper.pdf), [Code](https://github.com/aayushjr/ssa2d)
- **[Dang et al.]** Actor-action semantic segmentation with region masks. *BMVC 2018*, [Paper](https://arxiv.org/pdf/1807.08430.pdf), [Code]()
- **[Ji et al.]** End-to-end joint semantic segmentation of actors and actions in video. *ECCV 2018 *, [Paper](https://openaccess.thecvf.com/content_ECCV_2018/papers/Jingwei_Ji_End-to-End_Joint_Semantic_ECCV_2018_paper.pdf), [Code](https://github.com/JingweiJ/JointActorActionSeg)## Video Semantic Segmentation
- **[TubeFormer-DeepLab]** TubeFormer-DeepLab: Video mask transformer. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Kim_TubeFormer-DeepLab_Video_Mask_Transformer_CVPR_2022_paper.pdf), [Code]()
- **[CFFM]** Coarse-to-fine feature mining for video semantic segmentation. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Sun_Coarse-To-Fine_Feature_Mining_for_Video_Semantic_Segmentation_CVPR_2022_paper.pdf), [Code](https://github.com/GuoleiSun/VSS-CFFM)
- **[Video K-Net]** Video K-Net: A simple, strong, and unified baseline for video segmentation. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Li_Video_K-Net_A_Simple_Strong_and_Unified_Baseline_for_Video_CVPR_2022_paper.pdf), [Code](https://github.com/lxtGH/Video-K-Net)
- **[SegFormer]** SegFormer: Simple and efficient design for semantic segmentation with transformers. *NeurIPS 2021*, [Paper](https://proceedings.neurips.cc/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf), [Code](https://github.com/NVlabs/SegFormer)
- **[TCB]** VSPW: A large-scale dataset for video scene parsing in the wild. *CVPR 2021*, [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Miao_VSPW_A_Large-scale_Dataset_for_Video_Scene_Parsing_in_the_CVPR_2021_paper.pdf), [Code](https://github.com/VSPW-dataset/VSPW_code)
- **[STT]** Video semantic segmentation via sparse temporal transformer. *MM 2021*, [Paper](https://dl.acm.org/doi/abs/10.1145/3474085.3475409), [Code]()
- **[TMANet]** Temporal memory attention for video semantic segmentation. * *, [Paper](https://arxiv.org/abs/2102.08643), [Code](https://github.com/wanghao9610/TMANet)## Video Panoptic Segmentation
- **[CAROQ]** Context-aware relative object queries to unify video instance and panoptic segmentation. *CVPR 2023*, [Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Choudhuri_Context-Aware_Relative_Object_Queries_To_Unify_Video_Instance_and_Panoptic_CVPR_2023_paper.pdf), [Code](https://github.com/AnwesaChoudhuri/CAROQ)
- **[Slot-VPS]** Slot-VPS: Object-centric representation learning for video panoptic segmentation. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Zhou_Slot-VPS_Object-Centric_Representation_Learning_for_Video_Panoptic_Segmentation_CVPR_2022_paper.pdf), [Code](https://github.com/SAITPublic/SlotVPS)
- **[TubeFormer-DeepLab]** TubeFormer-DeepLab: Video mask transformer. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Kim_TubeFormer-DeepLab_Video_Mask_Transformer_CVPR_2022_paper.pdf), [Code]()
- **[ViP-Deeplab]** ViP-DeepLab: Learning visual perception with depth-aware video panoptic segmentation. *CVPR 2021*, [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Qiao_VIP-DeepLab_Learning_Visual_Perception_With_Depth-Aware_Video_Panoptic_Segmentation_CVPR_2021_paper.pdf), [Code](https://github.com/joe-siyuan-qiao/ViP-DeepLab)
- **[Video K-Net]** Video K-Net: A simple, strong, and unified baseline for video segmentation. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Li_Video_K-Net_A_Simple_Strong_and_Unified_Baseline_for_Video_CVPR_2022_paper.pdf), [Code](https://github.com/lxtGH/Video-K-Net)
- **[SiamTrack]** Learning to associate every segment for video panoptic segmentation. *CVPR 2021*, [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Woo_Learning_To_Associate_Every_Segment_for_Video_Panoptic_Segmentation_CVPR_2021_paper.pdf), [Code]()
- **[VPSNet]** Video panoptic segmentation. *CVPR 2020*, [Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Kim_Video_Panoptic_Segmentation_CVPR_2020_paper.pdf), [Code](https://github.com/mcahny/vps)## Depth Aware Video Panoptic Segmentation
- **[PolyphonicFormer]** PolyphonicFormer: Unified query learning for depth-aware video panoptic segmentation. *ECCV 2022*, [Paper](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136870574.pdf), [Code](https://github.com/HarborYuan/PolyphonicFormer)
- **[TubeFormer-DeepLab]** TubeFormer-DeepLab: Video mask transformer. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Kim_TubeFormer-DeepLab_Video_Mask_Transformer_CVPR_2022_paper.pdf), [Code]()
- **[ViP-Deeplab]** ViP-DeepLab: Learning visual perception with depth-aware video panoptic segmentation. *CVPR 2021*, [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Qiao_VIP-DeepLab_Learning_Visual_Perception_With_Depth-Aware_Video_Panoptic_Segmentation_CVPR_2021_paper.pdf), [Code](https://github.com/joe-siyuan-qiao/ViP-DeepLab)## Panoramic Video Panoptic Segmentation
- **[ViP-DeepLab+]** Waymo open dataset: Panoramic video panoptic segmentation. *ECCV 2022*, [Paper](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136890052.pdf), [Code](https://github.com/waymo-research/waymo-open-dataset/tree/master)
## Text Referring Video Object Segmentation
- **[ReferFormer]** Language as queries for referring video object segmentation. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Wu_Language_As_Queries_for_Referring_Video_Object_Segmentation_CVPR_2022_paper.pdf), [Code](https://github.com/wjn922/ReferFormer)
- **[MTTR]** End-to-end referring video object segmentation with multimodal transformers. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Botach_End-to-End_Referring_Video_Object_Segmentation_With_Multimodal_Transformers_CVPR_2022_paper.pdf), [Code](https://github.com/mttr2021/MTTR)
- **[YOFO]** You only infer once: Cross-modal meta-transfer for referring video object segmentation. *AAAI 2022*, [Paper](https://ojs.aaai.org/index.php/AAAI/article/view/20017), [Code]()
- **[URVOS]** URVOS: Unified referring video object segmentation network with a large-scale benchmark. *ECCV 2020*, [Paper](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123600205.pdf), [Code](https://github.com/skynbe/Refer-Youtube-VOS)## Audio Referring Video Object Segmentation
- **[Wnet]** Wnet: Audio-guided video object segmentation via wavelet-based cross-modal denoising networks. *CVPR 2022*, [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Pan_Wnet_Audio-Guided_Video_Object_Segmentation_via_Wavelet-Based_Cross-Modal_Denoising_Networks_CVPR_2022_paper.pdf), [Code](https://github.com/asudahkzj/Wnet)