Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sayantansatpati/awesome-data-science
Laundry List of Data Science / ML /AI resources available online
https://github.com/sayantansatpati/awesome-data-science
List: awesome-data-science
artificial-intelligence blog cnn data data-mining data-science deep-learning deep-neural-networks documentation machine-learning mooc neural-network nn research resources rnn technology
Last synced: 16 days ago
JSON representation
Laundry List of Data Science / ML /AI resources available online
- Host: GitHub
- URL: https://github.com/sayantansatpati/awesome-data-science
- Owner: sayantansatpati
- Created: 2017-02-12T20:22:17.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2022-11-29T12:45:11.000Z (about 2 years ago)
- Last Synced: 2024-05-20T08:02:19.776Z (7 months ago)
- Topics: artificial-intelligence, blog, cnn, data, data-mining, data-science, deep-learning, deep-neural-networks, documentation, machine-learning, mooc, neural-network, nn, research, resources, rnn, technology
- Homepage:
- Size: 18.6 KB
- Stars: 15
- Watchers: 5
- Forks: 7
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-data-science - Laundry List of Data Science / ML /AI resources available online. (Other Lists / Monkey C Lists)
README
# Data Science Resources
*A curated list of Data Science resources available online*### Table of Contents
- **[Video Lectures](#video-lectures)**
- [ML and DL MOOCs](#ml-and-dl-moocs)
- [Mathematics](#mathematics)
- [Other Online Video Lectures](#other-online-video-lectures)
- **[Reading Materials](#reading-materials)**
- [Research Papers](#research-papers)
- [GitHub](#github)
- [Blogs](#blogs)
- [Online Books](#online-books)
- [Notes](#notes)
- [Cheat Sheets](#cheat-sheets)
- [Misc Others](#misc-others)
- **[Articles](#articles)**
- [Forward and Backpropagation](#forward-and-backpropagation)
- [RNN](#rnn)
- [Collection of Useful Resources](#collection-of-useful-resources)
- [Quora](#quora)
- [Misc](#misc)## Video Lectures
### ML and DL MOOCs
1. [Coursera: Andrew NG](https://www.coursera.org/learn/machine-learning)
2. [Coursera: Geoffrey Hinton](https://www.coursera.org/learn/neural-networks)
3. [Caltech: Abu Mostafa](http://work.caltech.edu/telecourse.html)
4. [Stanford: NLP cs224n](http://web.stanford.edu/class/cs224n/), [Coursera Videos](https://www.youtube.com/watch?v=nfoudtpBV68&index=1&list=PL6397E4B26D00A269)
5. [Stanford: CNN cs231n](http://cs231n.github.io/), [Videos](https://archive.org/details/cs231n-CNNs), [Spring 2017](https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&app=desktop)
6. [Stanford: MMDS](https://lagunita.stanford.edu/courses/course-v1:ComputerScience+MMDS+SelfPaced/about)
7. [Berkeley: Deep Reinforcement Learning](http://rll.berkeley.edu/deeprlcourse/)
8. [Stanford: Convex Optimization](http://online.stanford.edu/course/convex-optimization-winter-2014)
9. [Stanford: Probabilistic Graphical Models](https://www.coursera.org/specializations/probabilistic-graphical-models)
10. [Big Data University: TensorFlow](https://bigdatauniversity.com/courses/deep-learning-tensorflow/)
11. [Kadenze: TensorFlow](https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow-iv/info)
12. [Udacity Nanodegree: AI](https://www.udacity.com/ai)
13. [Udacity Nanodegree: Self Driving Car](https://www.udacity.com/drive)
14. [EDX: Berkeley X-Series Spark](https://www.edx.org/xseries/data-science-engineering-apacher-sparktm#courses)
15. [Oxford Deep NLP: 2017 SLides Only](https://github.com/oxford-cs-deepnlp-2017/lectures)### Mathematics
1. [Khan Academy: Linear Algebra](https://www.khanacademy.org/math/linear-algebra)
2. [Khan Academy: Calculus](https://www.khanacademy.org/math/calculus-home)
3. [MIT: Linear Algebra](https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/)
4. [MIT: Calculus](https://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/)
5. [Harvard: Stat110](http://projects.iq.harvard.edu/stat110/youtube)### Other Online Video Lectures
1. [Stanford: cs231n Winter 2016 lectures](https://www.youtube.com/playlist?list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
2. [Bay Area Deep Learning School](http://www.bayareadlschool.org/)
* [1st Day](https://www.youtube.com/watch?v=eyovmAtoUx0)
* [2nd Day](https://www.youtube.com/watch?v=9dXiAecyJrY)
3. [Deep Learning Summer School, Montreal](http://videolectures.net/deeplearning2016_montreal/)
4. [TensorFlow Without a PhD](https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd)## Reading Materials
### Research Papers1. [arxiv](https://arxiv.org/)
2. [gitxiv](http://www.gitxiv.com/)
3. [Deep Learning Reading List](http://deeplearning.net/reading-list/)
4. [Hacker Dojo Deep Learning Study Papers](https://github.com/mike-bowles/hdDeepLearningStudy)
5. [Deep Learning Papers Reading Roadmap](https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap)
6. [Awesome Deep Vision](https://github.com/kjw0612/awesome-deep-vision)
7. [The-9-Deep-Learning-Papers-You-Need-To-Know-About](https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html)
8. [awesome-deep-learning-papers](https://github.com/terryum/awesome-deep-learning-papers)### Collection of Resources
1. [Arthur Chan's Top-5 DL](http://thegrandjanitor.com/2016/08/15/learning-deep-learning-my-top-five-resource/)### GitHub
1. [top-10-data-science-github](http://www.kdnuggets.com/2016/03/top-10-data-science-github.html)
2. [Awesome Data Science](https://github.com/bulutyazilim/awesome-datascience)
3. [Awesome Machine Learning](https://github.com/josephmisiti/awesome-machine-learning)
4. [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning)
5. [Awesome Deep Vision](https://github.com/kjw0612/awesome-deep-vision)
6. [Awesome Artifical Intelligence](https://github.com/owainlewis/awesome-artificial-intelligence)
7. [awesome-deep-learning-papers](https://github.com/terryum/awesome-deep-learning-papers)
8. [A-gallery-of-interesting-Jupyter-and-IPython-Notebooks](https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-and-IPython-Notebooks)
9. [Collection of Data Science iPython Notebooks](https://github.com/donnemartin/data-science-ipython-notebooks)
10. [Stanford: cs231n](http://cs231n.github.io/)
11. [Adrej Karpathy](http://karpathy.github.io/)
12. [Hvass-Labs: TensorFlow Tutorial Notebooks](https://github.com/Hvass-Labs/TensorFlow-Tutorials)
13. [machine-learning-for-software-engineers](https://github.com/ZuzooVn/machine-learning-for-software-engineers)
14. [data-scientists-to-follow-best-tutorials](https://www.analyticsvidhya.com/blog/2015/07/github-special-data-scientists-to-follow-best-tutorials/)
15. [Oxford Deep NLP: 2017](https://github.com/oxford-cs-deepnlp-2017/lectures)### Blogs
1. [colah's blog](http://colah.github.io/)
2. [iamtrask](https://iamtrask.github.io/)
3. [Medium](https://medium.com/)
4. [KDNuggets](http://www.kdnuggets.com/)
5. [datasciencecentral](http://www.datasciencecentral.com/)
6. [machinelearningmastery](http://machinelearningmastery.com/blog/)
7. [Edwin Chen's blog](http://blog.echen.me/)
8. [Hunch](http://hunch.net/)
9. [frequently-updated-machine-learning-blogs](http://bigdata-madesimple.com/frequently-updated-machine-learning-blogs/)
10. [Arthur Chan's Blog](http://thegrandjanitor.com/)### Online Books
1. [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/index.html)
2. [Deep Learning Book](http://www.deeplearningbook.org/)
3. [An Introduction to Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/)
4. [The Elements of Statistical Learning](https://statweb.stanford.edu/~tibs/ElemStatLearn/)
5. [A Course in Machine Learning](http://ciml.info/)
### Notes
1. [cs229: ML Course Materials](http://cs229.stanford.edu/materials.html)### Cheat Sheets
1. [KDNuggets: data-science-machine-learning-cheat-sheets](http://www.kdnuggets.com/2016/12/data-science-machine-learning-cheat-sheets-updated.html)### Misc Others
1. [TensorFlow](https://www.tensorflow.org/tutorials/)
2. [Tensorflow for Deep Learning Research](http://web.stanford.edu/class/cs20si/syllabus.html)
3. [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples)
4. [pytorch-tutorial](https://github.com/yunjey/pytorch-tutorial/blob/master/README.md)
5. [learning-deep-learning-my-top-five-resource](http://thegrandjanitor.com/2016/08/15/learning-deep-learning-my-top-five-resource/)## Articles
### Forward and Backpropagation
1. [yes-you-should-understand-backprop](https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b#.6ipdwn1is)
2. [Neural Network in Python](http://iamtrask.github.io/2015/07/12/basic-python-network/)
3. [Step By Step Backpropagation](https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/)### RNN
1. [Andrej Karpathy's lecture](https://www.youtube.com/watch?v=iX5V1WpxxkY)
2. [Christopher Olah on how LSTMs work](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
3. [RNN using TensorFlow](http://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html)
4. [Andrej Karpathy's Blog](http://karpathy.github.io/2015/05/21/rnn-effectiveness/)### Useful Resources
1. [Open Source Data Science Masters](http://datasciencemasters.org/)
2. [analyticsvidhya: 21 Deep Learning Videos (2016)](https://www.analyticsvidhya.com/blog/2016/12/21-deep-learning-videos-tutorials-courses-on-youtube-from-2016/)
3. [analyticsvidhya: Top YouTube Videos (2015)](https://www.analyticsvidhya.com/blog/2015/07/top-youtube-videos-machine-learning-neural-network-deep-learning/)
4. [Free Python Books](http://pythonbooks.revolunet.com/)
5. [16 Free Machine Learning Books](https://hackerlists.com/free-machine-learning-books/)
6. [frequently-updated-machine-learning-blogs](http://bigdata-madesimple.com/frequently-updated-machine-learning-blogs/)### Quora
1. [What-are-the-best-machine-learning-blogs-or-resources-available](https://www.quora.com/What-are-the-best-machine-learning-blogs-or-resources-available)
2. [How-do-I-learn-machine-learning-1](https://www.quora.com/How-do-I-learn-machine-learning-1)
3. [What-are-some-good-books-papers-for-learning-deep-learning](https://www.quora.com/What-are-some-good-books-papers-for-learning-deep-learning)### Misc
1. [Visual Information Theory](https://colah.github.io/posts/2015-09-Visual-Information/)
2. [4 Steps for Learning Deep Learning](https://medium.com/@vzkuma/4-steps-for-learning-deep-learning-86f11fcee54#.gnfxqsk54)
3. [How to build a Recurrent Neural Network in TensorFlow (1/7)](https://medium.com/@erikhallstrm/hello-world-rnn-83cd7105b767#.rj930jywc)
4. [Understanding-LSTMs](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
5. [anyone-can-code-lstm](https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/)