Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/skfolio/skfolio

Python library for portfolio optimization built on top of scikit-learn
https://github.com/skfolio/skfolio

asset-allocation asset-management convex-optimization cvar-optimization cvxpy efficient-frontier hierarchical-clustering machine-learning portfolio portfolio-optimization quantitative-finance quantitative-investment risk-parity scikit-learn trading-strategies

Last synced: 3 days ago
JSON representation

Python library for portfolio optimization built on top of scikit-learn

Awesome Lists containing this project

README

        

.. -*- mode: rst -*-

|Licence| |Codecov| |Black| |PythonVersion| |PyPi| |CI/CD| |Downloads| |Ruff| |Contribution| |Website| |JupyterLite|

.. |Licence| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg
:target: https://github.com/skfolio/skfolio/blob/main/LICENSE

.. |Codecov| image:: https://codecov.io/gh/skfolio/skfolio/graph/badge.svg?token=KJ0SE4LHPV
:target: https://codecov.io/gh/skfolio/skfolio

.. |PythonVersion| image:: https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12-blue.svg
:target: https://pypi.org/project/skfolio/

.. |PyPi| image:: https://img.shields.io/pypi/v/skfolio
:target: https://pypi.org/project/skfolio

.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black

.. |CI/CD| image:: https://img.shields.io/github/actions/workflow/status/skfolio/skfolio/release.yml.svg?logo=github
:target: https://github.com/skfolio/skfolio/raw/main/LICENSE

.. |Downloads| image:: https://static.pepy.tech/badge/skfolio
:target: https://pepy.tech/project/skfolio

.. |Ruff| image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json
:target: https://github.com/astral-sh/ruff

.. |Contribution| image:: https://img.shields.io/badge/Contributions-Welcome-blue
:target: https://github.com/skfolio/skfolio/blob/main/CONTRIBUTING.md

.. |Website| image:: https://img.shields.io/website.svg?down_color=red&down_message=down&up_color=53cc0d&up_message=up&url=https://skfolio.org
:target: https://skfolio.org

.. |JupyterLite| image:: https://jupyterlite.rtfd.io/en/latest/_static/badge.svg
:target: https://skfolio.org/lite

.. |PythonMinVersion| replace:: 3.10
.. |NumpyMinVersion| replace:: 1.23.4
.. |ScipyMinVersion| replace:: 1.8.0
.. |PandasMinVersion| replace:: 1.4.1
.. |CvxpyMinVersion| replace:: 1.4.1
.. |SklearnMinVersion| replace:: 1.6.0
.. |JoblibMinVersion| replace:: 1.3.2
.. |PlotlyMinVersion| replace:: 5.22.0

===============
|icon| skfolio
===============
.. |icon| image:: https://raw.githubusercontent.com/skfolio/skfolio/master/docs/_static/logo_animate.svg
:width: 100
:alt: skfolio documentation
:target: https://skfolio.org/

**skfolio** is a Python library for portfolio optimization built on top of scikit-learn.
It offers a unified interface and tools compatible with scikit-learn to build, fine-tune,
and cross-validate portfolio models.

It is distributed under the open-source 3-Clause BSD license.

.. image:: https://raw.githubusercontent.com/skfolio/skfolio/master/docs/_static/expo.jpg
:target: https://skfolio.org/auto_examples/
:alt: examples

Important links
~~~~~~~~~~~~~~~

- Documentation: https://skfolio.org/
- Examples: https://skfolio.org/auto_examples/
- User Guide: https://skfolio.org/user_guide/
- GitHub Repo: https://github.com/skfolio/skfolio/

Installation
~~~~~~~~~~~~

`skfolio` is available on PyPI and can be installed with::

pip install -U skfolio

Dependencies
~~~~~~~~~~~~

`skfolio` requires:

- python (>= |PythonMinVersion|)
- numpy (>= |NumpyMinVersion|)
- scipy (>= |ScipyMinVersion|)
- pandas (>= |PandasMinVersion|)
- cvxpy (>= |CvxpyMinVersion|)
- scikit-learn (>= |SklearnMinVersion|)
- joblib (>= |JoblibMinVersion|)
- plotly (>= |PlotlyMinVersion|)

Key Concepts
~~~~~~~~~~~~
Since the development of modern portfolio theory by Markowitz (1952), mean-variance
optimization (MVO) has received considerable attention.

Unfortunately, it faces a number of shortcomings, including high sensitivity to the
input parameters (expected returns and covariance), weight concentration, high turnover,
and poor out-of-sample performance.

It is well-known that naive allocation (1/N, inverse-vol, etc.) tends to outperform
MVO out-of-sample (DeMiguel, 2007).

Numerous approaches have been developed to alleviate these shortcomings (shrinkage,
additional constraints, regularization, uncertainty set, higher moments, Bayesian
approaches, coherent risk measures, left-tail risk optimization, distributionally robust
optimization, factor model, risk-parity, hierarchical clustering, ensemble methods,
pre-selection, etc.).

Given the large number of methods, and the fact that they can be combined, there is a
need for a unified framework with a machine-learning approach to perform model
selection, validation, and parameter tuning while mitigating the risk of data leakage
and overfitting.

This framework is built on scikit-learn's API.

Available models
~~~~~~~~~~~~~~~~

* Portfolio Optimization:
* Naive:
* Equal-Weighted
* Inverse-Volatility
* Random (Dirichlet)
* Convex:
* Mean-Risk
* Risk Budgeting
* Maximum Diversification
* Distributionally Robust CVaR
* Clustering:
* Hierarchical Risk Parity
* Hierarchical Equal Risk Contribution
* Nested Clusters Optimization
* Ensemble Methods:
* Stacking Optimization

* Expected Returns Estimator:
* Empirical
* Exponentially Weighted
* Equilibrium
* Shrinkage

* Covariance Estimator:
* Empirical
* Gerber
* Denoising
* Detoning
* Exponentially Weighted
* Ledoit-Wolf
* Oracle Approximating Shrinkage
* Shrunk Covariance
* Graphical Lasso CV
* Implied Covariance

* Distance Estimator:
* Pearson Distance
* Kendall Distance
* Spearman Distance
* Covariance Distance (based on any of the above covariance estimators)
* Distance Correlation
* Variation of Information

* Prior Estimator:
* Empirical
* Black & Litterman
* Factor Model

* Uncertainty Set Estimator:
* On Expected Returns:
* Empirical
* Circular Bootstrap
* On Covariance:
* Empirical
* Circular Bootstrap

* Pre-Selection Transformer:
* Non-Dominated Selection
* Select K Extremes (Best or Worst)
* Drop Highly Correlated Assets
* Select Non-Expiring Assets
* Select Complete Assets (handle late inception, delisting, etc.)

* Cross-Validation and Model Selection:
* Compatible with all `sklearn` methods (KFold, etc.)
* Walk Forward
* Combinatorial Purged Cross-Validation

* Hyper-Parameter Tuning:
* Compatible with all `sklearn` methods (GridSearchCV, RandomizedSearchCV)

* Risk Measures:
* Variance
* Semi-Variance
* Mean Absolute Deviation
* First Lower Partial Moment
* CVaR (Conditional Value at Risk)
* EVaR (Entropic Value at Risk)
* Worst Realization
* CDaR (Conditional Drawdown at Risk)
* Maximum Drawdown
* Average Drawdown
* EDaR (Entropic Drawdown at Risk)
* Ulcer Index
* Gini Mean Difference
* Value at Risk
* Drawdown at Risk
* Entropic Risk Measure
* Fourth Central Moment
* Fourth Lower Partial Moment
* Skew
* Kurtosis

* Optimization Features:
* Minimize Risk
* Maximize Returns
* Maximize Utility
* Maximize Ratio
* Transaction Costs
* Management Fees
* L1 and L2 Regularization
* Weight Constraints
* Group Constraints
* Budget Constraints
* Tracking Error Constraints
* Turnover Constraints
* Cardinality and Group Cardinality Constraints
* Threshold (Long and Short) Constraints

Quickstart
~~~~~~~~~~
The code snippets below are designed to introduce the functionality of `skfolio` so you
can start using it quickly. It follows the same API as scikit-learn.

Imports
-------
.. code-block:: python

from sklearn import set_config
from sklearn.model_selection import (
GridSearchCV,
KFold,
RandomizedSearchCV,
train_test_split,
)
from sklearn.pipeline import Pipeline
from scipy.stats import loguniform

from skfolio import RatioMeasure, RiskMeasure
from skfolio.datasets import load_factors_dataset, load_sp500_dataset
from skfolio.model_selection import (
CombinatorialPurgedCV,
WalkForward,
cross_val_predict,
)
from skfolio.moments import (
DenoiseCovariance,
DetoneCovariance,
EWMu,
GerberCovariance,
ShrunkMu,
)
from skfolio.optimization import (
MeanRisk,
NestedClustersOptimization,
ObjectiveFunction,
RiskBudgeting,
)
from skfolio.pre_selection import SelectKExtremes
from skfolio.preprocessing import prices_to_returns
from skfolio.prior import BlackLitterman, EmpiricalPrior, FactorModel
from skfolio.uncertainty_set import BootstrapMuUncertaintySet

Load Dataset
------------
.. code-block:: python

prices = load_sp500_dataset()

Train/Test split
----------------
.. code-block:: python

X = prices_to_returns(prices)
X_train, X_test = train_test_split(X, test_size=0.33, shuffle=False)

Minimum Variance
----------------
.. code-block:: python

model = MeanRisk()

Fit on Training Set
-------------------
.. code-block:: python

model.fit(X_train)

print(model.weights_)

Predict on Test Set
-------------------
.. code-block:: python

portfolio = model.predict(X_test)

print(portfolio.annualized_sharpe_ratio)
print(portfolio.summary())

Maximum Sortino Ratio
---------------------
.. code-block:: python

model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
risk_measure=RiskMeasure.SEMI_VARIANCE,
)

Denoised Covariance & Shrunk Expected Returns
---------------------------------------------
.. code-block:: python

model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
prior_estimator=EmpiricalPrior(
mu_estimator=ShrunkMu(), covariance_estimator=DenoiseCovariance()
),
)

Uncertainty Set on Expected Returns
-----------------------------------
.. code-block:: python

model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
mu_uncertainty_set_estimator=BootstrapMuUncertaintySet(),
)

Weight Constraints & Transaction Costs
--------------------------------------
.. code-block:: python

model = MeanRisk(
min_weights={"AAPL": 0.10, "JPM": 0.05},
max_weights=0.8,
transaction_costs={"AAPL": 0.0001, "RRC": 0.0002},
groups=[
["Equity"] * 3 + ["Fund"] * 5 + ["Bond"] * 12,
["US"] * 2 + ["Europe"] * 8 + ["Japan"] * 10,
],
linear_constraints=[
"Equity <= 0.5 * Bond",
"US >= 0.1",
"Europe >= 0.5 * Fund",
"Japan <= 1",
],
)
model.fit(X_train)

Risk Parity on CVaR
-------------------
.. code-block:: python

model = RiskBudgeting(risk_measure=RiskMeasure.CVAR)

Risk Parity & Gerber Covariance
-------------------------------
.. code-block:: python

model = RiskBudgeting(
prior_estimator=EmpiricalPrior(covariance_estimator=GerberCovariance())
)

Nested Cluster Optimization with Cross-Validation and Parallelization
---------------------------------------------------------------------
.. code-block:: python

model = NestedClustersOptimization(
inner_estimator=MeanRisk(risk_measure=RiskMeasure.CVAR),
outer_estimator=RiskBudgeting(risk_measure=RiskMeasure.VARIANCE),
cv=KFold(),
n_jobs=-1,
)

Randomized Search of the L2 Norm
--------------------------------
.. code-block:: python

randomized_search = RandomizedSearchCV(
estimator=MeanRisk(),
cv=WalkForward(train_size=252, test_size=60),
param_distributions={
"l2_coef": loguniform(1e-3, 1e-1),
},
)
randomized_search.fit(X_train)

best_model = randomized_search.best_estimator_

print(best_model.weights_)

Grid Search on Embedded Parameters
----------------------------------
.. code-block:: python

model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
risk_measure=RiskMeasure.VARIANCE,
prior_estimator=EmpiricalPrior(mu_estimator=EWMu(alpha=0.2)),
)

print(model.get_params(deep=True))

gs = GridSearchCV(
estimator=model,
cv=KFold(n_splits=5, shuffle=False),
n_jobs=-1,
param_grid={
"risk_measure": [
RiskMeasure.VARIANCE,
RiskMeasure.CVAR,
RiskMeasure.VARIANCE.CDAR,
],
"prior_estimator__mu_estimator__alpha": [0.05, 0.1, 0.2, 0.5],
},
)
gs.fit(X)

best_model = gs.best_estimator_

print(best_model.weights_)

Black & Litterman Model
-----------------------
.. code-block:: python

views = ["AAPL - BBY == 0.03 ", "CVX - KO == 0.04", "MSFT == 0.06 "]
model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
prior_estimator=BlackLitterman(views=views),
)

Factor Model
------------
.. code-block:: python

factor_prices = load_factors_dataset()

X, y = prices_to_returns(prices, factor_prices)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=False)

model = MeanRisk(prior_estimator=FactorModel())
model.fit(X_train, y_train)

print(model.weights_)

portfolio = model.predict(X_test)

print(portfolio.calmar_ratio)
print(portfolio.summary())

Factor Model & Covariance Detoning
----------------------------------
.. code-block:: python

model = MeanRisk(
prior_estimator=FactorModel(
factor_prior_estimator=EmpiricalPrior(covariance_estimator=DetoneCovariance())
)
)

Black & Litterman Factor Model
------------------------------
.. code-block:: python

factor_views = ["MTUM - QUAL == 0.03 ", "VLUE == 0.06"]
model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
prior_estimator=FactorModel(
factor_prior_estimator=BlackLitterman(views=factor_views),
),
)

Pre-Selection Pipeline
----------------------
.. code-block:: python

set_config(transform_output="pandas")
model = Pipeline(
[
("pre_selection", SelectKExtremes(k=10, highest=True)),
("optimization", MeanRisk()),
]
)
model.fit(X_train)

portfolio = model.predict(X_test)

K-fold Cross-Validation
-----------------------
.. code-block:: python

model = MeanRisk()
mmp = cross_val_predict(model, X_test, cv=KFold(n_splits=5))
# mmp is the predicted MultiPeriodPortfolio object composed of 5 Portfolios (1 per testing fold)

mmp.plot_cumulative_returns()
print(mmp.summary())

Combinatorial Purged Cross-Validation
-------------------------------------
.. code-block:: python

model = MeanRisk()

cv = CombinatorialPurgedCV(n_folds=10, n_test_folds=2)

print(cv.get_summary(X_train))

population = cross_val_predict(model, X_train, cv=cv)

population.plot_distribution(
measure_list=[RatioMeasure.SHARPE_RATIO, RatioMeasure.SORTINO_RATIO]
)
population.plot_cumulative_returns()
print(population.summary())

Recognition
~~~~~~~~~~~

We would like to thank all contributors to our direct dependencies, such as
scikit-learn and cvxpy, as well as the contributors of the following resources that
served as sources of inspiration:

* PyPortfolioOpt
* Riskfolio-Lib
* scikit-portfolio
* microprediction
* statsmodels
* rsome
* gautier.marti.ai

Citation
~~~~~~~~

If you use `skfolio` in a scientific publication, we would appreciate citations:

Bibtex entry::

@misc{skfolio,
author = {Delatte, Hugo and Nicolini, Carlo},
title = {skfolio},
year = {2023},
url = {https://github.com/skfolio/skfolio}
}