Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/station-10/awesome-marketing-machine-learning
A curated list of awesome machine learning libraries for marketing, including media mix models, multi touch attribution, causal inference and more
https://github.com/station-10/awesome-marketing-machine-learning
List: awesome-marketing-machine-learning
attribution awesome-list causal-inference clv machine-learning marketing media mmm mta recommendation-system synthetic-control time-series-forecasting
Last synced: 23 days ago
JSON representation
A curated list of awesome machine learning libraries for marketing, including media mix models, multi touch attribution, causal inference and more
- Host: GitHub
- URL: https://github.com/station-10/awesome-marketing-machine-learning
- Owner: station-10
- License: mit
- Created: 2023-08-10T13:35:17.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-05-01T11:06:06.000Z (8 months ago)
- Last Synced: 2024-11-14T04:02:31.535Z (about 1 month ago)
- Topics: attribution, awesome-list, causal-inference, clv, machine-learning, marketing, media, mmm, mta, recommendation-system, synthetic-control, time-series-forecasting
- Homepage: http://www.station10.co.uk
- Size: 63.5 KB
- Stars: 88
- Watchers: 2
- Forks: 9
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-marketing-machine-learning - A curated list of awesome machine learning libraries for marketing, including media mix models, multi touch attribution, causal inference and more. (Programming Language Lists / Python Lists)
README
[![Awesome](images/awesome.svg)](https://github.com/sindresorhus/awesome)
[![Maintenance](https://img.shields.io/badge/Maintained%3F-YES-green.svg)](https://github.com/EthicalML/awesome-production-machine-learning/graphs/commit-activity)
![GitHub](https://img.shields.io/badge/Languages-MULTI-blue.svg)
![GitHub](https://img.shields.io/badge/License-MIT-lightgrey.svg)
[![GitHub](https://img.shields.io/badge/Twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white)](https://twitter.com/station10_uk)
[![GitHub](https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/company/-station10-)# awesome-marketing-machine-learning
A curated list of awesome machine learning libraries for marketing. Inspired by both
[awesome-production-machine-learning](https://github.com/EthicalML/awesome-production-machine-learning) and
[awesome-machine-learning](https://github.com/josephmisiti/awesome-machine-learning),
and created and maintained by [Station 10](https://station10.co.uk/).Note that some packages could fit into more than one section. This has been noted in the descriptions so be sure to Ctrl + F as well as exploring by
sections.Want to contribute? Please raise a Pull Request or an issue. If you find this useful please drop a ⭐️. This helps motivate us and others to update and
maintain the list.All packages are Python based unless otherwise stated. We welcome contributions from R Users!
# Main Content
## Attribution
* [ChannelAttribution](https://github.com/DavideAltomare/ChannelAttribution/tree/master) ![Github Stars](https://img.shields.io/github/stars/DavideAltomare/ChannelAttribution.svg?style=social)
Python and R library that employs a k-order Markov representation to identify structural correlations in customer journey data.
* [fractribution](https://github.com/google/fractribution) ![Github Stars](https://img.shields.io/github/stars/google/fractribution.svg?style=social)
Data driven MTA by Google.
* [Marketing-Attribution-Models](https://github.com/DP6/Marketing-Attribution-Models) ![Github Stars](https://img.shields.io/github/stars/DP6/Marketing-Attribution-Models.svg?style=social)
Heuristic and data driven Multi Touch Attribution.
* [markov-chain-attribution](https://github.com/jerednel/markov-chain-attribution) ![Github Stars](https://img.shields.io/github/stars/jerednel/markov-chain-attribution.svg?style=social)
Leverages a first order Markov chain to reallocate conversions.
* [mta](https://github.com/eeghor/mta) ![Github Stars](https://img.shields.io/github/stars/eeghor/mta.svg?style=social)
Various data driven Multi Touch Attribution algorithms.
* [pychattr](https://github.com/jmwoloso/pychattr) ![Github Stars](https://img.shields.io/github/stars/jmwoloso/pychattr.svg?style=social)
Python implementation of the excellent R ChannelAttribution library.
* [shapley](https://github.com/hartmann-lars/shapley) ![Github Stars](https://img.shields.io/github/stars/hartmann-lars/shapley.svg?style=social)
Shapley Values For Attribution Modelling.
* [shapley-attribution-model-zhao-naive](https://github.com/ianchute/shapley-attribution-model-zhao-naive) ![Github Stars](https://img.shields.io/github/stars/ianchute/shapley-attribution-model-zhao-naive.svg?style=social)
Shapley Value Methods for Attribution Modeling (Naive, Set-based).## Causal Inference
* [CausalImpact](https://github.com/google/CausalImpact) ![Github Stars](https://img.shields.io/github/stars/google/CausalImpact.svg?style=social)
(R) Causal Inference using Bayesian structural time-series models by Google.
* [causalml](https://github.com/uber/causalml) ![Github Stars](https://img.shields.io/github/stars/uber/causalml.svg?style=social)
Uplift modeling and causal inference with ML by Uber.
* [CausalPy](https://github.com/pymc-labs/CausalPy) ![Github Stars](https://img.shields.io/github/stars/pymc-labs/CausalPy.svg?style=social)
Causal Inference & Synthetic Control. Supports fitting with `scikit-learn` and `PyMC` models.
* [dowhy](https://github.com/py-why/dowhy) ![Github Stars](https://img.shields.io/github/stars/py-why/dowhy.svg?style=social)
Causal Inference that supports explicit modeling and testing of causal assumptions.
* [SyntheticControlMethods](https://github.com/OscarEngelbrektson/SyntheticControlMethods) ![Github Stars](https://img.shields.io/github/stars/OscarEngelbrektson/SyntheticControlMethods.svg?style=social)
Causal inference using Synthetic Control.
* [tfcausalimpact](https://github.com/WillianFuks/tfcausalimpact) ![Github Stars](https://img.shields.io/github/stars/WillianFuks/tfcausalimpact.svg?style=social)
Google's [CausalImpact](https://github.com/google/CausalImpact) Algorithm implemented on top of [TensorFlow Probability](https://github.com/tensorflow/probability).
* [upliftml](https://github.com/bookingcom/upliftml) ![Github Stars](https://img.shields.io/github/stars/bookingcom/upliftml.svg?style=social)
Scalable unconstrained and constrained uplift modeling from experimental data using PySpark and H20.
* [scikit-uplift](https://github.com/maks-sh/scikit-uplift) ![Github Stars](https://img.shields.io/github/stars/maks-sh/scikit-uplift.svg?style=social)
* Uplift modeling python package that provides fast sklearn-style models implementation, evaluation metrics and visualization tools.## Churn / CLV
* [btyd](https://github.com/ColtAllen/btyd) ![Github Stars](https://img.shields.io/github/stars/ColtAllen/btyd.svg?style=social)
Buy Till You Die and CLV statistical models in Python.
* [lifetimes](https://github.com/CamDavidsonPilon/lifetimes) ![Github Stars](https://img.shields.io/github/stars/CamDavidsonPilon/lifetimes.svg?style=social)
CLV and Churn modelling. Deprecated and incorporated into [pymc-marketing](https://github.com/pymc-labs/pymc-marketing).
* [lucius-ltv](https://github.com/plexagon/lucius-ltv) ![Github Stars](https://img.shields.io/github/stars/plexagon/lucius-ltv.svg?style=social)
CLV for subscriptions.## Data
* [gapandas4](https://github.com/practical-data-science/gapandas4) ![Github Stars](https://img.shields.io/github/stars/practical-data-science/gapandas4.svg?style=social)
Python package for querying the Google Analytics Data API for GA4 and displaying the results in a Pandas dataframe.## Econometrics
* [EconML](https://github.com/py-why/EconML) ![Github Stars](https://img.shields.io/github/stars/py-why/EconML.svg?style=social)
AI, Econometrics and Causal Inference modelling.
* [statsmodels](https://github.com/statsmodels/statsmodels) ![Github Stars](https://img.shields.io/github/stars/statsmodels/statsmodels.svg?style=social)
Statistical modeling including time series and econometrics.## Geo Experimentation
* [trimmed_match](https://github.com/google/trimmed_match) ![Github Stars](https://img.shields.io/github/stars/google/trimmed_match.svg?style=social)
Ad effectiveness through the design and analysis of randomized Geo Experiments by Google.
* [matched_markets](https://github.com/google/matched_markets) ![Github Stars](https://img.shields.io/github/stars/google/matched_markets.svg?style=social)
Time-Based regression matched markets approach for designing Geo Experiments by Google.
* [GeoexperimentsResearch](https://github.com/google/GeoexperimentsResearch) ![Github Stars](https://img.shields.io/github/stars/facebookincubator/GeoLift.svg?style=social)
(R) Open-source implementation of the geo experiment analysis methodology developed at Google (Archived)
* [GeoLift](https://github.com/facebookincubator/GeoLift) ![Github Stars](https://img.shields.io/github/stars/facebookincubator/GeoLift.svg?style=social)
Geo Experimentation methodology based on Synthetic Control Methods used to measure lift of ad campaigns by Facebook.## Media / Marketing Mix Models
* [BayesianMMM](https://github.com/leopoldavezac/BayesianMMM) ![Github Stars](https://img.shields.io/github/stars/leopoldavezac/BayesianMMM.svg?style=social)
Bayesian Media Mix mMdelling with shape and carryover effect.
* [dammmdatagen](https://github.com/DoktorMike/dammmdatagen) ![Github Stars](https://img.shields.io/github/stars/DoktorMike/dammmdatagen.svg?style=social)
(R) Media Mix Modeling Data Generator.
* [lightweight-mmm](https://github.com/google/lightweight_mmm) ![Github Stars](https://img.shields.io/github/stars/google/lightweight_mmm.svg?style=social)
Bayesian Media Mix Models by Google.
* [mamimo](https://github.com/Garve/mamimo) ![Github Stars](https://img.shields.io/github/stars/Garve/mamimo.svg?style=social)
Small Media Mix Models designed to be used in conjunction with ML libraries (e.g. SKL)
* [mmm-stan](https://github.com/sibylhe/mmm_stan) ![Github Stars](https://img.shields.io/github/stars/sibylhe/mmm_stan.svg?style=social)
Multiplicative Media Media Mix Model.
* [pymc-marketing](https://github.com/pymc-labs/pymc-marketing) ![Github Stars](https://img.shields.io/github/stars/pymc-labs/pymc-marketing.svg?style=social)
Bayesian Media Mix, Adstock, Saturation Customer Lifetime Value & Churn models.
* [Robyn](https://github.com/facebookexperimental/Robyn) ![Github Stars](https://img.shields.io/github/stars/facebookexperimental/Robyn.svg?style=social)
(R) Bayesian Media Mix Models by Facebook.## Personalisation / Segmentation
* [amazon-denseclus](https://github.com/awslabs/amazon-denseclus) ![Github Stars](https://img.shields.io/github/stars/awslabs/amazon-denseclus.svg?style=social)
Python module for clustering both categorical and numerical data using UMAP and HDBSCAN by Amazon.
* [rfm](https://github.com/sonwanesuresh95/rfm) ![Github Stars](https://img.shields.io/github/stars/sonwanesuresh95/rfm.svg?style=social)
RFM Analysis and Customer Segmentation.
* [retentioneering-tools](https://github.com/retentioneering/retentioneering-tools) ![Github Stars](https://img.shields.io/github/stars/retentioneering/retentioneering-tools.svg?style=social)
Retentioneering: product analytics, data-driven customer journey map optimization, marketing analytics, web analytics, transaction analytics, graph visualization, and behavioral segmentation
* [ecommercetools](https://github.com/practical-data-science/ecommercetools) ![Github Stars](https://img.shields.io/github/stars/practical-data-science/ecommercetools.svg?style=social)
Data science toolkit for those working in technical ecommerce, marketing science, and technical seo and includes a wide range of features to aid analysis and model building.## Recommendation Systems
* [lightfm](https://github.com/lyst/lightfm) ![Github Stars](https://img.shields.io/github/stars/lyst/lightfm.svg?style=social)
Implementation of LightFM, a hybrid recommendation algorithm.
* [openrec](https://github.com/ylongqi/openrec) ![Github Stars](https://img.shields.io/github/stars/ylongqi/openrec.svg?style=social)
Open-source and modular library for neural network-inspired recommendation algorithms.
* [recmetrics](https://github.com/statisticianinstilettos/recmetrics) ![Github Stars](https://img.shields.io/github/stars/statisticianinstilettos/recmetrics.svg?style=social)
A library of metrics for evaluating recommender systems
* [recommenders](https://github.com/microsoft/recommenders) ![Github Stars](https://img.shields.io/github/stars/microsoft/recommenders.svg?style=social)
Best Practices on Recommendation Systems by Microsoft.
* [Surprise](https://github.com/NicolasHug/Surprise) ![Github Stars](https://img.shields.io/github/stars/NicolasHug/Surprise.svg?style=social)
Scikit for building and analyzing recommender systems that deal with explicit rating data.## Time Series
* [darts](https://github.com/unit8co/darts) ![Github Stars](https://img.shields.io/github/stars/unit8co/darts.svg?style=social)
Python library for user-friendly forecasting and anomaly detection on time series built using SKL conventions.
* [gluonts](https://github.com/awslabs/gluonts) ![Github Stars](https://img.shields.io/github/stars/awslabs/gluonts.svg?style=social)
Probabilistic time series modeling, focusing on deep learning based models, based on PyTorch and MXNet.
* [neural_prophet](https://github.com/ourownstory/neural_prophet) ![Github Stars](https://img.shields.io/github/stars/ourownstory/neural_prophet.svg?style=social)
Framework for interpretable time series forecasting built on PyTorch.
* [orbit](https://github.com/uber/orbit) ![Github Stars](https://img.shields.io/github/stars/uber/orbit.svg?style=social)
Python package for Bayesian time series forecasting and inference by Uber.
* [pmdarima](https://github.com/alkaline-ml/pmdarima) ![Github Stars](https://img.shields.io/github/stars/alkaline-ml/pmdarima.svg?style=social)
* Pmdarima is a statistical library designed to fill the void in Python's time series analysis capabilities.
* [prophet](https://github.com/facebook/prophet) ![Github Stars](https://img.shields.io/github/stars/facebook/prophet.svg?style=social)
Additive time series modelling by Facebook.
* [sktime](https://github.com/sktime/sktime) ![Github Stars](https://img.shields.io/github/stars/sktime/sktime.svg?style=social)
A unified framework for ML with Time Eeries.
* [statsforecast](https://github.com/Nixtla/statsforecast) ![Github Stars](https://img.shields.io/github/stars/Nixtla/statsforecast.svg?style=social)
Lightning ⚡️ fast forecasting with statistical and econometric models.
* [stumpy](https://github.com/TDAmeritrade/stumpy) ![Github Stars](https://img.shields.io/github/stars/TDAmeritrade/stumpy.svg?style=social)
STUMPY computes something called the matrix profile, which is just an academic way of saying "for every subsequence automatically identify its corresponding nearest-neighbor"
* [temporian](https://github.com/google/temporian) ![Github Stars](https://img.shields.io/github/stars/google/temporian.svg?style=social)
Temporian is an open-source Python library for preprocessing ⚡ and feature engineering 🛠 temporal data 📈 for machine learning applications 🤖.
* [tbats](https://github.com/intive-DataScience/tbats) ![Github Stars](https://img.shields.io/github/stars/intive-DataScience/tbats.svg?style=social)
BATS and TBATS time series forecasting
* [tsfresh](https://github.com/blue-yonder/tsfresh) ![Github Stars](https://img.shields.io/github/stars/blue-yonder/tsfresh.svg?style=social)
Time Series Feature extraction based on scalable hypothesis tests.
* [tslearn](https://github.com/tslearn-team/tslearn) ![Github Stars](https://img.shields.io/github/stars/tslearn-team/tslearn.svg?style=social)
The machine learning toolkit for time series analysis in Python.## Survival Analysis
* [lifelines](https://github.com/CamDavidsonPilon/lifelines) ![Github Stars](https://img.shields.io/github/stars/CamDavidsonPilon/lifelines.svg?style=social)
lifelines is a pure Python implementation of the best parts of survival analysis.
* [pysurvival](https://github.com/square/pysurvival) ![Github Stars](https://img.shields.io/github/stars/square/pysurvival.svg?style=social)
An open source python package for Survival Analysis modeling.
* [scikit-survival](https://github.com/sebp/scikit-survival) ![Github Stars](https://img.shields.io/github/stars/sebp/scikit-survival.svg?style=social)
Survival analysis built on top of scikit-learn.## Synthetic Control
* [pysyncon](https://github.com/sdfordham/pysyncon) ![Github Stars](https://img.shields.io/github/stars/sdfordham/pysyncon.svg?style=social)
Multiple Synthetic Control implementations.
* [scpi](https://github.com/nppackages/scpi) ![Github Stars](https://img.shields.io/github/stars/nppackages/scpi.svg?style=social)
Provides Python, R and Stata implementations of estimation and inference procedures for synthetic control methods.
* [SparseSC](https://github.com/microsoft/SparseSC) ![Github Stars](https://img.shields.io/github/stars/microsoft/SparseSC.svg?style=social)
Sparse Synthetic Control Models in Python by Microsoft.## Synthetic Data
* [Decoy](https://github.com/EqualExperts/decoy) ![Github Stars](https://img.shields.io/github/stars/EqualExperts/decoy.svg?style=social)
Synthetic Data Generator using DuckDB at its core.
* [SDV](https://github.com/sdv-dev/SDV) ![Github Stars](https://img.shields.io/github/stars/sdv-dev/SDV.svg?style=social)
Python library designed to be your one-stop shop for creating tabular synthetic data.