Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sunglok/awesome-robotics-datasets
A collection of useful datasets for robotics and computer vision
https://github.com/sunglok/awesome-robotics-datasets
computer-vision dataset robotics
Last synced: about 2 months ago
JSON representation
A collection of useful datasets for robotics and computer vision
- Host: GitHub
- URL: https://github.com/sunglok/awesome-robotics-datasets
- Owner: mint-lab
- Created: 2018-04-24T02:38:36.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2021-08-26T19:34:00.000Z (over 3 years ago)
- Last Synced: 2024-05-23T05:17:29.374Z (8 months ago)
- Topics: computer-vision, dataset, robotics
- Homepage: https://mint-lab.github.io/awesome-robotics-datasets/
- Size: 12.7 KB
- Stars: 333
- Watchers: 11
- Forks: 38
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-lists-machine-learning - Robotics datasets
- Awesome-SLAM - Awesome Robotics Datasets
- awesome-computer-vision - Awesome Robotics Datasets
README
* TOC
{:toc}## Dataset Collections
* **Robotics**
* ~~[Radish: The Robotics Data Set Repository](http://radish.sourceforge.net/), Andrew Howard and Nicholas Roy~~ (Not working)
* [Repository of Robotics and Computer Vision Datasets](https://www.mrpt.org/robotics_datasets), MRPT
* :memo: It includes _Malaga datasets_ and some of classic datasets published in [Radish](http://radish.sourceforge.net/).
* [IJRR Data Papers](http://journals.sagepub.com/topic/collections/ijr-3-datapapers/ijr), IJRR
* [Awesome SLAM Datasets](https://github.com/youngguncho/awesome-slam-datasets), Younggun Cho :+1:
* **Computer Vision**
* [CVonline Image Databases](http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm), CVonline
* [Computer Vision Datasets on the Web](http://www.cvpapers.com/datasets.html), CVPapers :+1:
* [YACVID: Yet Another Computer Vision Index To Datasets](http://riemenschneider.hayko.at/vision/dataset/), Hayko Riemenschneider :+1:
* [Computer Vision Online Datasets](https://computervisiononline.com/datasets), Computer Vision Online
* **Others**
* [Machine Learning Repository](http://archive.ics.uci.edu/ml), UCI
* [Kaggle Datasets](https://www.kaggle.com/datasets), Kaggle
* [IEEE DataPort](https://ieee-dataport.org/), IEEE## Place-specific Datasets
### Driving Datasets
* [KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/) and [KITTI-360](http://www.cvlibs.net/datasets/kitti-360/), Andreas Geiger et al. :+1:
* [SemanticKITTI](http://semantic-kitti.org/), Jens Behley et al.
* [Waymo Open Dataset](https://waymo.com/open), Waymo
* [Cityscapes Dataset](https://www.cityscapes-dataset.com/)
* [AppoloScape Dataset](http://apolloscape.auto/)
* [Berkely DeepDrive Dataset](https://bdd-data.berkeley.edu/) (BDD100K), BAIR at UC Berkely
* [nuScenes Dataset](https://www.nuscenes.org/), APTIV
* [$D^2$-City Dataset](https://outreach.didichuxing.com/d2city/d2city), DiDi
* [Ford Campus Vision and Lidar Data Set](http://robots.engin.umich.edu/SoftwareData/Ford), PeRL at Univ. of Michigan
* [MIT DARPA Urban Challenge Dataset](http://grandchallenge.mit.edu/wiki/index.php?title=PublicData), MIT
* [KAIST Multi-spectral Recognition Dataset in Day and Night](https://sites.google.com/view/multispectral/), RCV Lab at KAIST
* [KAIST Complex Urban Dataset](http://irap.kaist.ac.kr/dataset/), IRAP Lab at KAIST
* [New College Dataset](http://www.robots.ox.ac.uk/NewCollegeData/index.php), MRG at Oxford Univ.
* [Chinese Driving from a Bike View](http://www.sujingwang.name/CDBV.html) (CDBV), CAS
* [CULane Dataset](https://xingangpan.github.io/projects/CULane.html), CUHK
* [ROMA (ROad MArkings) Image Database](http://perso.lcpc.fr/tarel.jean-philippe/bdd/), Jean-Philippe Tarel et al.### Flying Datasets
* [The Zurich Urban Micro Aerial Vehicle Dataset](http://rpg.ifi.uzh.ch/zurichmavdataset.html), RPG at ETHZ
* [The UZH-FPV Drone Racing Dataset](http://rpg.ifi.uzh.ch/uzh-fpv.html), RPG at ETHZ
* [MultiDrone Public Dataset](https://multidrone.eu/multidrone-public-dataset/), MultiDrone Project
* [The Blackbird Dataset](https://github.com/mit-fast/Blackbird-Dataset), AgileDrones Group at MIT### Underwater Datasets
* [Marine Robotics Datasets](http://marine.acfr.usyd.edu.au/datasets/), ACFR### Outdoor Datasets
* [The Rawseeds Project](http://www.rawseeds.org/)
* :memo: It includes _Bovisa_ dataset is for outdoor and _Bicocca_ dataset is for indoor.
* [Planetary Mapping and Navigation Datasets](http://asrl.utias.utoronto.ca/datasets/), ASRL at Univ. of Toronto### Indoor Datasets
* [Robotics 2D-Laser Datasets](http://www.ipb.uni-bonn.de/datasets/), Cyrill Stachniss
* :memo: It includes some of classic datasets published in [Radish](http://radish.sourceforge.net/).
* [Long-Term Mobile Robot Operations](http://robotics.researchdata.lncn.eu/), Lincoln Univ.
* [MIT Stata Center Data Set](http://projects.csail.mit.edu/stata/), Marine Robotics Group at MIT
* [KTH and COLD Database](https://www.pronobis.pro/#data), Andrzej Pronobis
* [Shopping Mall Datasets](http://www.irc.atr.jp/sets/TEMPOSAN_dataset/), IRC at ATR
* [RGB-D Dataset 7-Scenes](https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/), Microsoft## Topic-specific Datasets for Robotics
### Localization, Mapping, and SLAM
* [SLAM Benchmarking](http://ais.informatik.uni-freiburg.de/slamevaluation/), AIS at Univ. of Freiburg
* [Robotic 3D Scan Repository](http://kos.informatik.uni-osnabrueck.de/3Dscans/), Univ. of Wurzburg and Univ. of Osnabruck
* [3D Pose Graph Optimization](https://lucacarlone.mit.edu/datasets/), Luca Carlone
* **Landmark-based Localization**
* [Range-only Data for Localization](http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/), CMU RI
* [Roh's Angulation Dataset](https://github.com/sunglok/TriangulationToolbox/tree/master/dataset_roh), HyunChul Roh
* [Wireless Sensor Network Dataset](http://www.cs.virginia.edu/~whitehouse/research/localization/), Kamin Whitehouse### Path Planning and Navigation
* [Pathfinding Benchmarks](http://www.movingai.com/benchmarks/), Moving AI Lab at Univ. of Denver
* [Task and Motion Planner Benchmarking](http://www.neil.dantam.name/2018/rss-tmp-workshop/#benchmarks), RSS 2018 Workshop## Topic-specific Datasets for Computer Vision
### Features
* [Affine Covariant Features Datasets](https://www.robots.ox.ac.uk/~vgg/data/affine/), VGG at Oxford
* [Repeatability Benchmark Tutorial](https://www.vlfeat.org/benchmarks/overview/repeatability.html), VLFeat
* [A list of feature performance evaluation datasets](https://github.com/openMVG/Features_Repeatability), maintained by openMVG### Saliency and Foreground
* **Saliency**
* [MIT Saliency Benchmark](http://saliency.mit.edu/), MIT
* [Salient Object Detection: A Benchmark](http://mmcheng.net/salobjbenchmark/), Ming-Ming Cheng
* **Foreground/Change Detection (Background Subtraction)**
* [ChangeDetection.NET](http://www.changedetection.net/) (a.k.a. CDNET)### Motion and Pose Estimation
* [AdelaideRMF: Robust Model Fitting Data Set](https://cs.adelaide.edu.au/~hwong/doku.php?id=data), Hoi Sim Wong### Structure-from-Motion and 3D Reconstruction
* **Objects**
* [IVL-SYNTHESFM v2](https://board.unimib.it/datasets/fnxy8z8894/1), Davide Marelli et al.
* [Fuji-SfM Dataset](https://zenodo.org/record/3712808#.YSfTs44zaUl), Jordi Gene-Mola et al.
* [Large Geometric Models Archive](https://www.cc.gatech.edu/projects/large_models/), Georgia Tech
* [The Stanford 3D Scanning Repository](http://graphics.stanford.edu/data/3Dscanrep/), Stanford Univ.
* **Places**
* [Photo Tourism Data](http://phototour.cs.washington.edu/), UW and Microsoft### Object Tracking
* [Visual Object Tracking Challenge](http://www.votchallenge.net/) (a.k.a. VOT) :+1:
* [Visual Tracker Benchmark](http://cvlab.hanyang.ac.kr/tracker_benchmark/) (a.k.a. OTB)### Object, Place, and Event Recognition
* **Pedestrians**
* [EuroCity Persons Dataset](https://eurocity-dataset.tudelft.nl/) (a.k.a. ECP)
* [Daimler Pedestrian Benchmark Data Sets](http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html)
* [CrowdHuman](http://www.crowdhuman.org/)
* **Objects**
* [RGB-D Object Dataset](http://rgbd-dataset.cs.washington.edu/), UW
* [Sweet Pepper and Peduncle 3D Datasets](http://enddl22.net/wordpress/datasets/sweet-pepper-and-peduncle-3d-datasets), InKyu Sa
* **Places**
* [Loop Closure Detection](http://cogrob.ensta-paristech.fr/loopclosure.html), David Filliat et. al.
* **Traffic and Surveillance**
* [BEST: Benchmark and Evaluation of Surveillance Task](http://best.sjtu.edu.cn/Data/List/Datasets), SJTU
* [VIRAT Video Dataset](http://www.viratdata.org/)## Research Groups
* [TUM CVG Datasets](https://vision.in.tum.de/data/datasets)
* Tags: Visual(-inertia) odometry, visual SLAM, 3D reconstruction
* [Oxford VGG Datasets](http://www.robots.ox.ac.uk/~vgg/data/)
* Tags: Visual features, visual recognition, 3D reconstruction
* [QUT CyPhy Datasets](https://wiki.qut.edu.au/display/cyphy/Datasets)
* Tags: Visual SLAM, LiDAR SLAM
* [Univ. of Bonn Univ. Stachniss Lab Datasets](https://www.ipb.uni-bonn.de/data/)
* Tags: SLAM
* [EPFL CVLAB Datasets](https://cvlab.epfl.ch/data)
* Tags: 3D reconstruction, local keypoint, optical flow, RGB-D pedestrian
* [The Middlebury Computer Vision Pages](http://vision.middlebury.edu/)
* Tags: Stereo matching, 3D reconstruction, MRF, optical flow, color
* [Caltech CVG Datasets](http://www.vision.caltech.edu/archive.html)
* Tags: Objects (pedestrian, car, face), 3D reconstruction (on turntables)