Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/surenderthakran/gomind

A simplistic Neural Network Library in Go
https://github.com/surenderthakran/gomind

go golang machine-learning neural-network

Last synced: 3 months ago
JSON representation

A simplistic Neural Network Library in Go

Awesome Lists containing this project

README

        


# GoMind

[![Build Status](https://travis-ci.com/surenderthakran/gomind.svg?branch=master)](https://travis-ci.com/surenderthakran/gomind)
[![GoDoc](https://godoc.org/github.com/surenderthakran/gomind?status.png)](https://godoc.org/github.com/surenderthakran/gomind)
[![codecov](https://codecov.io/gh/surenderthakran/gomind/branch/master/graph/badge.svg)](https://codecov.io/gh/surenderthakran/gomind)
[![Go Report Card](https://goreportcard.com/badge/github.com/surenderthakran/gomind)](https://goreportcard.com/report/github.com/surenderthakran/gomind)
[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://github.com/singhsurender/gomind/blob/master/LICENSE)

## Installation
```
go get github.com/surenderthakran/gomind
```

## About
GoMind is a neural network library written entirely in Go.
It only supports a single hidden layer (for now).
The network learns from a training set using back-propagation algorithm.

Some of the salient features of GoMind are:
- Supports following activation functions:
- Linear (Default)
- [Sigmoid](https://en.wikipedia.org/wiki/Sigmoid_function)
- [ReLU](https://en.wikipedia.org/wiki/Rectifier_(neural_networks))
- [Leaky ReLU](https://en.wikipedia.org/wiki/Rectifier_%28neural_networks%29#Leaky_ReLUs)
- Smartly estimates ideal number of hidden layer neurons (if a count is not given during model configuration) for given input and output sizes.
- Uses [Mean Squared Error function](https://en.wikipedia.org/wiki/Mean_squared_error) to calculate error while back propagating.

Note: To understand the basic functioning of back-propagation in neural networks, one can refer to my blog [here](https://www.surenderthakran.com/articles/tech/implement-back-propagation-neural-network).

## Usage
```
package main

import (
"github.com/singhsurender/gomind"
)

func main() {
trainingSet := [][][]float64{
[][]float64{[]float64{0, 0}, []float64{0}},
[][]float64{[]float64{0, 1}, []float64{1}},
[][]float64{[]float64{1, 0}, []float64{1}},
[][]float64{[]float64{1, 1}, []float64{0}},
}

mind, err := gomind.New(&gomind.ModelConfiguration{
NumberOfInputs: 2,
NumberOfOutputs: 1,
NumberOfHiddenLayerNeurons: 16,
HiddenLayerActivationFunctionName: "relu",
OutputLayerActivationFunctionName: "sigmoid",
})
if err != nil {
return nil, fmt.Errorf("unable to create neural network. %v", err)
}

for i := 0; i < 500; i++ {
rand := rand.Intn(4)
input := trainingSet[rand][0]
output := trainingSet[rand][1]

if err := mind.LearnSample(input, output); err != nil {
mind.Describe(true)
return nil, fmt.Errorf("error while learning from sample input: %v, target: %v. %v", input, output, err)
}

actual := mind.LastOutput()
outputError, err := mind.CalculateError(output)
if err != nil {
mind.Describe(true)
return nil, fmt.Errorf("error while calculating error for input: %v, target: %v and actual: %v. %v", input, output, actual, err)
}

outputAccuracy, err := mind.CalculateAccuracy(output)
if err != nil {
mind.Describe(true)
return nil, fmt.Errorf("error while calculating error for input: %v, target: %v and actual: %v. %v", input, output, actual, err)
}

fmt.Println("Index: %v, Input: %v, Target: %v, Actual: %v, Error: %v, Accuracy: %v\n", i, input, output, actual, outputError, outputAccuracy)
}
}
```

## API Documentation
The documentation for various methods exposed by the library can be found at: [https://godoc.org/github.com/surenderthakran/gomind](https://godoc.org/github.com/surenderthakran/gomind)