Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tensorlayer/dcgan
The Simplest DCGAN Implementation
https://github.com/tensorlayer/dcgan
dcgan gan generative-adversarial-network tensorlayer tensorlayerx
Last synced: 4 days ago
JSON representation
The Simplest DCGAN Implementation
- Host: GitHub
- URL: https://github.com/tensorlayer/dcgan
- Owner: tensorlayer
- Created: 2016-11-16T16:39:51.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2023-05-24T02:39:25.000Z (over 1 year ago)
- Last Synced: 2024-08-01T17:32:53.916Z (3 months ago)
- Topics: dcgan, gan, generative-adversarial-network, tensorlayer, tensorlayerx
- Language: Python
- Homepage: https://github.com/tensorlayer/tensorlayerx
- Size: 2.03 MB
- Stars: 336
- Watchers: 13
- Forks: 116
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-tensorlayer - DCGAN
- awesome-tensorflow - DCGAN - Deep Convolutional Generative Adversarial Networks (Models/Projects)
- awesome-tensorflow - DCGAN - Deep Convolutional Generative Adversarial Networks (Models/Projects)
- fucking-awesome-tensorflow - DCGAN - Deep Convolutional Generative Adversarial Networks (Models/Projects)
README
# DCGAN in TensorLayerX
- This is an implementation of [Deep Convolutional Generative Adversarial Networks](http://arxiv.org/abs/1511.06434).
Looking for Text to Image Synthesis? [click here](https://github.com/zsdonghao/text-to-image)- For earlier version, please check dcgan [release](https://github.com/tensorlayer/dcgan/releases) and [tensorlayer](https://github.com/tensorlayer/TensorLayer)
- For more computer vision applications, check [TLXCV](https://github.com/tensorlayer/TLXCV)
![alt tag](img/DCGAN.png)
## Prerequisites
🔥🔥🔥🔥🔥🔥 You need install TensorLayerX at first!
🔥🔥🔥🔥🔥🔥 Please install TensorLayerX via source
```
pip install tensorlayerx
```or
```
pip install git+https://github.com/tensorlayer/tensorlayerx.git
```## Usage
First, download the aligned face images from [google](https://drive.google.com/open?id=0B7EVK8r0v71pWEZsZE9oNnFzTm8) or [baidu](https://pan.baidu.com/s/1eSNpdRG#list/path=%2F) to a `data` folder.
Please place dataset 'img_align_celeba.zip' under 'data/celebA/' by default.
Your directory structure should look like this:
```
dcgan/
└── data.py
└── model.py
└── train.py
└── README.md
└── data
└── celebA
└── img_align_celeba.zip```
Second, train the GAN:
$ python train.py
## Result on celebA