Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/thecooldrop/awesome-autonomous
A curated list of repositories, libraries and topics which are related to furthering the autonomous robotics technologies
https://github.com/thecooldrop/awesome-autonomous
List: awesome-autonomous
Last synced: 3 months ago
JSON representation
A curated list of repositories, libraries and topics which are related to furthering the autonomous robotics technologies
- Host: GitHub
- URL: https://github.com/thecooldrop/awesome-autonomous
- Owner: thecooldrop
- License: mit
- Created: 2021-03-09T21:04:21.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2021-03-10T22:43:25.000Z (over 3 years ago)
- Last Synced: 2024-05-21T02:24:01.552Z (6 months ago)
- Size: 5.86 KB
- Stars: 0
- Watchers: 0
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
- Contributing: contributing.md
- License: LICENSE
- Code of conduct: code-of-conduct.md
Awesome Lists containing this project
- ultimate-awesome - awesome-autonomous - A curated list of repositories, libraries and topics which are related to furthering the autonomous robotics technologies. (Other Lists / PowerShell Lists)
README
# Awesome Autonomous [![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
> A curated list of repositories, resources and methodologies which lead to advancement of autonomous technologies
## Topics overview
- [Target Tracking](#Tracking)
- [Simultanoues Localization and Mapping](#Simultaneous-localization-and-mapping)
- [Robotics Platforms](#Robotics-platforms)
- [Utility libraries](#Utility-libraries)## Contribute
Contributions welcome! Read the [contribution guidelines](contributing.md) first.
## Tracking
### Datasets
- [PETS 2009 Benchmark data](http://www.cvg.reading.ac.uk/PETS2009/a.html)
- [MOT Challenge](https://motchallenge.net/)
- [The WILDTRACK Seven-Camera HD Dataset](https://www.epfl.ch/labs/cvlab/data/data-wildtrack/)
- [Nvidia AI City Challenge](https://www.aicitychallenge.org/2020-data-and-evaluation/)
- [VisDrone Dataset](https://github.com/VisDrone/VisDrone-Dataset)
- [Joined Track Auto Dataset](https://github.com/fabbrimatteo/JTA-Dataset)
- [Pathtrack dataset](https://www.trace.ethz.ch/publications/2017/pathtrack/index.html)
- [TAO: A Large-Scale Benchmark for Tracking Any Object](https://github.com/TAO-Dataset/tao)
- [KITTI Datasets] - http://www.cvlibs.net/datasets/kitti/eval_tracking.php
- [3D Lidar Object Detection and Tracking](http://apolloscape.auto/tracking.html)
- [UA-DETRAC](http://www.cs.albany.edu/cvml/cvml_downloads.html)
- [BDD100K Tracking Challenge](https://bdd-data.berkeley.edu/)### Papers
About this section. Optional. Keep this short and focus on the list.
- [List item](http://example.com)
- [List item](http://example.com)## Hand detection and pose estimation
### Datasets
- [EgoHands: A Dataset for Hands in Complex Egocentric Interactions](http://vision.soic.indiana.edu/projects/egohands/)
- [Oxford hand dataset](https://www.robots.ox.ac.uk/~vgg/research/hands/index.html)
### Repositories
- [handtracking by Victor Dibia](https://github.com/victordibia/handtracking)
- [Detecting hands in images tutorial](https://github.com/jkjung-avt/hand-detection-tutorial)
- [Hand Detection and Distance Estimation](https://github.com/pablovela5620/Hand-Detection-and-Distance-Estimation)
- [Handpose - A program to recognize hand pose fom RGB camera](https://github.com/MrEliptik/HandPose)
- [Gesture recognition from egocentric view](https://github.com/zzeitt/Gesture-Recognition)
### Resource collections
- [Awesome hand pose estimation](https://github.com/xinghaochen/awesome-hand-pose-estimation)
- []
### Articles
- [How to build a real time hand detector using neural networks](https://medium.com/@victor.dibia/how-to-build-a-real-time-hand-detector-using-neural-networks-ssd-on-tensorflow-d6bac0e4b2ce)
-## Simultaneous localization and mapping
## Robotics platforms
## Eye tracking
### Articles
- [Eye Tracking in Python with OpenCV](https://medium.com/@stepanfilonov/tracking-your-eyes-with-python-3952e66194a6)
### Libraries
- [Pupil](https://github.com/pupil-labs/pupil/)
- [Webgazer.js](https://github.com/brownhci/WebGazer)
### Tools and vendors
- [Pupil Labs](https://docs.pupil-labs.com/developer/core/network-api/)## Utility-libraries
### Rust
- [Ndarray](https://github.com/rust-ndarray/ndarray) - Numpy equivalent in Rust
- [Nalgebra](https://nalgebra.org/) - Matrices library with type-safe dimensions
### Python
- [Numpy](https://numpy.org/)
- [Scipy](https://www.scipy.org/)
- [Matplotlib](https://matplotlib.org/)## Machine learning support systems:
- [Keepsake - Version control for machine learning](https://github.com/replicate/keepsake)
- [Drifter_ml - Testing for Scikit models](https://github.com/EricSchles/drifter_ml)
- [Aim - Easy way to record and compare ML training runs](https://github.com/aimhubio/aim)
- [Clearml - ML experiment tracking tool](https://github.com/allegroai/clearml)
- [Hopsworks - Feature store](https://github.com/logicalclocks/hopsworks)
- [Polyaxon](https://github.com/polyaxon/polyaxon)
- [Sacred](https://github.com/IDSIA/sacred)
- [Guild AI - Optimize and automate ML experiments](https://github.com/guildai/guildai)
- [DVC - Data version control](https://github.com/iterative/dvc)
- [ML-Logger - Logging utility for ML](https://github.com/geyang/ml_logger)
- [MLflow: A Machine Learning Lifecycle Platform](https://github.com/mlflow/mlflow/)
- [labml.ai - mobile experimet and training tracking](https://github.com/lab-ml/labml)