Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tirendazacademy/awesome-data-science-resources
Resources about data science, machine learning, deep learning, data engineering, and SQL.
https://github.com/tirendazacademy/awesome-data-science-resources
List: awesome-data-science-resources
ai artificial-intelligence data-analysis data-engineering data-science dataengineering datascience deep-learning deeplearning machine-learning machinelearning machinelearning-python sql
Last synced: about 1 month ago
JSON representation
Resources about data science, machine learning, deep learning, data engineering, and SQL.
- Host: GitHub
- URL: https://github.com/tirendazacademy/awesome-data-science-resources
- Owner: TirendazAcademy
- Created: 2022-10-14T20:09:13.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2024-03-20T21:13:36.000Z (9 months ago)
- Last Synced: 2024-03-20T22:28:12.577Z (9 months ago)
- Topics: ai, artificial-intelligence, data-analysis, data-engineering, data-science, dataengineering, datascience, deep-learning, deeplearning, machine-learning, machinelearning, machinelearning-python, sql
- Homepage:
- Size: 3.52 MB
- Stars: 64
- Watchers: 6
- Forks: 12
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-data-science-resources - Resources about data science, machine learning, deep learning, data engineering, and SQL. (Other Lists / Monkey C Lists)
README
# 🔶 Welcome to Awesome Data Science Resources 🔶
![](https://github.com/TirendazAcademy/Awesome-Data-Science-Resources/blob/main/Images/Banner.png?raw=true)
Table of contents:
- [Data science](#data-science)
- [Machine learning](#machine-learning)
- [ML engineering](#ml-engineering)
- [Deep learning](#deep-learning)
- [Generative AI](#gen-ai)
- [NLP](#nlp)
- [Data engineering](#data-engineering)
- [SQL](#sql)If you like this repo, give us a ⭐
---
# 🚀 DATA SCIENCE
![](https://github.com/TirendazAcademy/Awesome-Data-Science-Resources/blob/main/Images/Data-Science.png)### Free Books
- [Free Programming Books](https://github.com/EbookFoundation/free-programming-books)
- [Natural Language Processing with Python](https://nltk.org/book_1ed/)
- [Think Stats](https://greenteapress.com/wp/think-stats-2e/)
- [Bayesian Methods for Hackers](https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/)
- [R for Data Science](https://r4ds.had.co.nz)
- [Machine Learning Yearning](https://github.com/ajaymache/machine-learning-yearning)
- [Hands-on Machine Learning with Scikit-learn and Tensorflow](https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/)
- [Forecasting: Principles and Practice](https://otexts.com/fpp2/index.html)
- [Deep learning](https://deeplearningbook.org)
- [Linear Algebra](https://joshua.smcvt.edu/linearalgebra/)
- [Introduction to Machine Learning with Python](https://drive.google.com/file/d/10Vrml277NCOa6SS9GV10m847jtPynt_n/view)### Blogs
- [Towards Data Science](https://towardsdatascience.com/)
- [KD nuggets](https://www.kdnuggets.com/)
- [HuggingFace Blog](https://huggingface.co/blog)
- [Comet Blog](https://www.comet.com/site/blog/)
- [Assembly AI](https://www.assemblyai.com/blog/)
- [Geeks for Geeks](https://www.geeksforgeeks.org/)
- [Weights & Biases Blog](https://wandb.ai/fully-connected)
- [Analytics Vidhya](https://www.analyticsvidhya.com/blog/)
- [Datacamp Blog](https://www.datacamp.com/blog)
- [Papers with code](https://paperswithcode.com/)
- [Aman.ai-exploring the art of AI](https://aman.ai/)### Projects
- [Different project topics for learning purposes](https://github.com/veb-101/Data-Science-Projects)
- [Online challenge](https://github.com/alexattia/Data-Science-Projects)
- [Data science challenges are made on Kaggle using Python](https://github.com/alexattia/Data-Science-Projects)
- [Data science projects](https://github.com/hyunjoonbok/Python-Projects)
- [Kaggle Data science projects](https://github.com/alexattia/Data-Science-Projects)### Repos Related to Libraries
- [Awesome Pandas](https://github.com/tommyod/awesome-pandas)
- [Pandas Tutorial](https://github.com/KeithGalli/pandas)
- [Effective Pandas](https://github.com/TomAugspurger/effective-pandas)
- [Pandas Tutorial Videos](https://github.com/justmarkham/pandas-videos)
- [Pandas AI](https://github.com/gventuri/pandas-ai)
- [Pandas-Workshop](https://github.com/stefmolin/pandas-workshop/tree/936e5dea93e1d60efbf98b641050c4ad1f3f1819)### Tools
- [lazypredict](https://github.com/shankarpandala/lazypredict)
- [PyCaret](https://github.com/pycaret/pycaret)
- [FeatureSelectionGA](https://github.com/kaushalshetty/FeatureSelectionGA)
- [Elicit](https://elicit.org/)### Useful Repos
- [Kaggle Courses](https://github.com/drakearch/kaggle-courses)
- [Pattern Classification](https://github.com/rasbt/pattern_classification)
- [Feature Selector: Simple Feature Selection in Python](https://github.com/WillKoehrsen/feature-selector)
- [Scikit Learn Mooc](https://inria.github.io/scikit-learn-mooc/index.html)
- [Hands-on Machine Learning & Deep Learning ](https://github.com/bansalkanav/Machine_Learning_and_Deep_Learning)
- [Data Science Best Resources](https://github.com/tirthajyoti/Data-science-best-resources)
- [Stats and Maths with Python](https://github.com/tirthajyoti/Stats-Maths-with-Python)
- [](https://github.com/nivu/ai_all_resources)### DataSets
- [A dataset with political datasets](https://github.com/erikgahner/PolData)
### Articles You Need to Read
- [Transformers](https://arxiv.org/pdf/1706.03762.pdf)
- [BERT](https://arxiv.org/pdf/1810.04805.pdf)
- [StyleGAN](https://arxiv.org/pdf/1812.04948.pdf)
- [CLIP](https://arxiv.org/pdf/2103.00020.pdf)
- [The game of Go with deep neural networks](https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf)
- [DNN for YouTube Recommendations](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.pdf)
# 🚀 MACHINE LEARNING
![](https://github.com/TirendazAcademy/Awesome-Data-Science-Resources/blob/main/Images/Machine-Learning.png)### Free Books
- [Python Data Science Handbook by Jake VanderPlas](https://github.com/jakevdp/PythonDataScienceHandbook)
- [Neural Networks and Deep Learning by Michael Nielsen](http://neuralnetworksanddeeplearning.com/)
- [Think Bayes by Allen B. Downey](https://greenteapress.com/wp/think-bayes/)
- [Machine Learning & Big Data by Kareem Alkaseer](http://www.kareemalkaseer.com/books/ml)
- [Statistical Learning with Sparsity The Lasso and Generalizations by Trevor Hastie](http://www.kareemalkaseer.com/books/ml)
- [ML Interviews Book](https://huyenchip.com/ml-interviews-book/)
- [Machine Learning Simplified](https://themlsbook.com/)### Courses
- [Production Machine Learning Systems](https://www.coursera.org/learn/gcp-production-ml-systems?specialization=preparing-for-google-cloud-machine-learning-engineer-professional-certificate)
- [Google Cloud Big Data and Machine Learning Fundamentals](https://www.coursera.org/learn/gcp-big-data-ml-fundamentals?specialization=preparing-for-google-cloud-machine-learning-engineer-professional-certificate)
- [MLOps (Machine Learning Operations) Fundamentals](https://www.coursera.org/learn/mlops-fundamentals?specialization=preparing-for-google-cloud-machine-learning-engineer-professional-certificate)
- [ML Pipelines on Google Cloud](https://www.coursera.org/learn/mlops-fundamentals?specialization=preparing-for-google-cloud-machine-learning-engineer-professional-certificate)### Useful Repos
- [Machine Learning for Beginners](https://github.com/microsoft/ML-For-Beginners) -
- [100 Days Of ML Code](https://github.com/Avik-Jain/100-Days-Of-ML-Code)
- [Awesome Machine Learning](https://github.com/josephmisiti/awesome-machine-learning)
- [Project-Based Learning](https://github.com/practical-tutorials/project-based-learning)
- [Homemade Machine Learning](https://github.com/trekhleb/homemade-machine-learning)
- [500 AI & Machine-learning Projects with Code](https://github.com/ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code)
- [Principles of Machine Learning Python by MicrosoftLearning](https://github.com/MicrosoftLearning/Principles-of-Machine-Learning-Python)
- [Machine Learning Basics](https://github.com/zotroneneis/machine_learning_basics)
- [TOBB ETU Machine Learning Course](https://github.com/bbardakk/TOBB-ETU-YAP470-2022)
- [DataCamp Notebooks](https://github.com/ozlerhakan/datacamp)
- [Machine Learning Guide](https://github.com/mikeroyal/Machine-Learning-Guide)
- [Practical Machine Learning with Python](https://github.com/dipanjanS/practical-machine-learning-with-python)
- [Machine Learning Pathway](https://github.com/ayyucedemirbas/Machine-Learning-Pathway)### Projects
- [ML projects](https://github.com/cloudxlab/ml)
- [DataCamp Project Solutions Python](https://github.com/veeralakrishna/DataCamp-Project-Solutions-Python)
- [Machine Learning Projects](https://github.com/ASHOKKUMAR-K/Machine-Learning-Projects)
- [Data Analytics Projects](https://github.com/arjunmann73/Data-Analytics-Projects)### Tools
- [PyCaret](https://github.com/pycaret/pycaret)
- [EvalML](https://github.com/alteryx/evalml)
# 🚀 ML ENGINEERING
![](https://github.com/TirendazAcademy/Awesome-Data-Science-Resources/blob/main/Images/ML-Engineering.png)### Useful Repos
- [MLOps Zoomcamp](https://github.com/DataTalksClub/mlops-zoomcamp)
### MLOps Tools
- [MLflow](https://mlflow.org/)
- [Comet ML](https://www.comet.com/site/)
- [Weights & Biases ](https://github.com/wandb)
- [ML Run](https://github.com/mlrun/mlrun)### YouTube
- [Python Machine Learning Tutorial](https://youtu.be/7eh4d6sabA0)
# 🚀 DEEP LEARNING
![](https://github.com/TirendazAcademy/Awesome-Data-Science-Resources/blob/main/Images/Deep-Learning.png)### Books
- [Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow](https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646)
- [Machine Learning with PyTorch and Scikit-Learn](https://www.packtpub.com/product/machine-learning-with-pytorch-and-scikit-learn/9781801819312)
- [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python)
- [AI and Machine Learning for Coders](https://www.amazon.com/Machine-Learning-Coders-Programmers-Intelligence/dp/1492078190)
- [Deep Learning for Coders with fastai & PyTorch](https://www.amazon.com/Deep-Learning-Coders-fastai-PyTorch/dp/1492045527)
- [Deep Learning from Scratch](https://www.amazon.com/Deep-Learning-Scratch-Building-Principles/dp/1492041416)
- [Grokking Deep Learning](https://www.manning.com/books/grokking-deep-learning)
- [Fundamentals of Deep Learning](https://www.oreilly.com/library/view/fundamentals-of-deep/9781492082170/)
- [Deep Learning with TensorFlow and Keras](https://www.amazon.com/Deep-Learning-TensorFlow-Keras-reinforcement/dp/1803232919)
- [Deep Learning](https://www.amazon.com/Deep-Learning-Adaptive-Computation-Machine/dp/0262035618)### Courses
- [Practical Deep Learning](https://course.fast.ai/)
- [Deep Learning Fundamentals](https://lightning.ai/pages/courses/deep-learning-fundamentals/)
- [Neuromatch deep learning course](https://deeplearning.neuromatch.io/tutorials/intro.html)### Frameworks
- [TensorFlow](https://www.tensorflow.org/tutorials)
- [Keras](https://keras.io/)
- [PyTorch](https://pytorch.org/tutorials/)
- [A curated list of tutorials](https://github.com/ritchieng/the-incredible-pytorch)
- [Learn PyTorch](https://www.learnpytorch.io/)
- [FastAI](https://docs.fast.ai/)
- [Pytorch Lightning](https://pytorch-lightning.readthedocs.io/en/stable/)### Repos
- [FastAI Course](https://github.com/fastai/courses)
- [Computer Vision](https://github.com/sindresorhus/awesome#computer-science)
- [Awesome-TensorFlow](https://github.com/jtoy/awesome-tensorflow)
- [Awesome AI Courses](https://github.com/SkalskiP/courses)
- [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning)
- [AI-For-Beginners ](https://github.com/microsoft/AI-For-Beginners)
- [Computer Vision Lectures](https://github.com/khanhnamle1994/computer-vision)
- [Everything about Transfer Learning](https://github.com/jindongwang/transferlearning)
- [Pytorch Beginner](https://github.com/L1aoXingyu/pytorch-beginner)
- [Variational autoencoder for anomaly detection](https://github.com/Michedev/VAE_anomaly_detection)### YouTube
- [PyTorch for Deep Learning & Machine Learning – Full Course](https://youtu.be/V_xro1bcAuA)
- [PyTorch Crash Course](https://youtu.be/OIenNRt2bjg)
- [Object Detection](https://youtu.be/yqkISICHH-U)
- [Deep Learning with PyTorch](https://youtu.be/c36lUUr864M)
- [Reinforcement Learning](https://youtu.be/Mut_u40Sqz4)- [LLM Courses](https://github.com/mlabonne/llm-course)
- [Awesome Generative AI Guide](https://github.com/aishwaryanr/awesome-generative-ai-guide)
- [Stable diffusion with Keras with Pokemon Dataset](https://github.com/sayakpaul/stable-diffusion-keras-ft)
- [Expert-Level Tutorials on Stable Diffusion](https://github.com/FurkanGozukara/Stable-Diffusion))
- [Awesome ChatGPT](https://github.com/sindresorhus/awesome-chatgpt)
# 🚀 NLP
![](https://github.com/TirendazAcademy/Awesome-Data-Science-Resources/blob/main/Images/NLP.png)### Repos
- [Natural Language Processing Tutorial](https://github.com/graykode/nlp-tutorial)
- [NLP Recipes](https://github.com/microsoft/nlp-recipes)
- [NLP Course](https://github.com/yandexdataschool/nlp_course)
- [NLP in Python Tutorial](https://github.com/adashofdata/nlp-in-python-tutorial)
- [Awesome NLP](https://github.com/keon/awesome-nlp)
- [Deep Learning Drizzle](https://deep-learning-drizzle.github.io/)### Courses
- [Advanced NLP with spaCy](https://course.spacy.io/en)
### LLMs
- [Building applications with LLMs](https://docs.langchain.com/docs/)
- [Awesome LangChain](https://github.com/kyrolabs/awesome-langchain)
- [Overview - Tutorial - Examples of LangChain](https://github.com/gkamradt/langchain-tutorials)
- [Share LLM apps](https://docs.chainlit.io/overview)
- [FlagAI (Fast LArge-scale General AI models)](https://github.com/FlagAI-Open/FlagAI)
- [OpenAI CookBook](https://github.com/openai/openai-cookbook)
- [Code Basics LangChain Tutorials](https://github.com/codebasics/langchain)
- [Cohere LLM University](https://docs.cohere.com/docs/llmu)
- [Conversation QA Gradio](https://github.com/hwchase17/conversation-qa-gradio)
# 🚀 DATA ENGINEERING
![](https://github.com/TirendazAcademy/Awesome-Data-Science-Resources/blob/main/Images/Data-Engineering.png)### Repos
- [The Data Engineering Cookbook](https://github.com/oleg-agapov/data-engineering-book)
- [Data Engineering Zoomcamp](https://github.com/DataTalksClub/data-engineering-zoomcamp)
- [Awesome Data Engineering](https://github.com/igorbarinov/awesome-data-engineering)
- [Udacity Data Engineering Projects](https://github.com/san089/Udacity-Data-Engineering-Projects)
- [Data Engineering Practice](https://github.com/danielbeach/data-engineering-practice)
- [Awesome Opensource Data Engineering](https://github.com/gunnarmorling/awesome-opensource-data-engineering)
- [Data Engineering Zoomcamp](https://github.com/DataTalksClub/data-engineering-zoomcamp)
- [How To Become a Data Engineer](https://github.com/adilkhash/Data-Engineering-HowTo)### Projects
- [HashtagCashtag](https://github.com/shafiab/HashtagCashtag)
- [Building a Data Engineering Project in 20 Minutes](https://github.com/sspaeti-com/practical-data-engineering)
- [Analyzing GitHub Repos](https://hoffa.medium.com/400-000-github-repositories-1-billion-files-14-terabytes-of-code-spaces-or-tabs-7cfe0b5dd7fd#.qm2s97y25)
- [Web Crawler For Online Inflation](https://github.com/uhussain/WebCrawlerForOnlineInflation)
- [This repo](https://github.com/alanchn31/Data-Engineering-Projects)
- [Data Engineering Project](https://github.com/damklis/DataEngineeringProject)
- [Data Engineering Practice](https://github.com/danielbeach/data-engineering-practice)
# 🚀 SQL
![](https://github.com/TirendazAcademy/Awesome-Data-Science-Resources/blob/main/Images/SQL.png)### Free Resources
- [SQLZoo](https://sqlzoo.net/wiki/SQL_Tutorial)
- [SQLBolt](https://sqlbolt.com)
- [Kaggle](https://www.kaggle.com/learn/intro-to-sql)
- [CodeAcademy](https://join.codecademy.com/learn/learn-sql/)
- [Pop SQL](https://popsql.com/learn-sql)
- [Learning SQL book](http://www.r-5.org/files/books/computers/languages/sql/mysql/Alan_Beaulieu-Learning_SQL-EN.pdf)
- [Khan Academy](https://www.khanacademy.org/computing/computer-programming/sql/sql-basics/v/welcome-to-sql)### Projects
- [Data Analysis Projects](https://github.com/codebasics/DataAnalysisProjects)
---
🚀 We'll update this repo once I find new sources so don't forget to watch this repo. If you enjoy this repo, give us a ⭐ and share 🙏
🔗 Let's connect! [YouTube](https://www.youtube.com/c/tirendazacademy) | [Medium](https://tirendazacademy.medium.com) | [Twitter](https://twitter.com/TirendazAcademy) | [Instagram](https://www.instagram.com/tirendazacademy) | [Tiktok](https://www.tiktok.com/@tirendazacademy) | [Reddit](https://www.reddit.com/user/TirendazAcademy)