Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tkoyama010/awesome-python-data-visualization
π list of awesome python data visualization
https://github.com/tkoyama010/awesome-python-data-visualization
List: awesome-python-data-visualization
awesome awesome-list chart data-vizualization dataviz python visualization visualize-data
Last synced: 7 days ago
JSON representation
π list of awesome python data visualization
- Host: GitHub
- URL: https://github.com/tkoyama010/awesome-python-data-visualization
- Owner: tkoyama010
- License: cc-by-4.0
- Created: 2024-01-28T05:48:43.000Z (10 months ago)
- Default Branch: main
- Last Pushed: 2024-10-14T23:12:56.000Z (25 days ago)
- Last Synced: 2024-10-25T03:12:40.952Z (15 days ago)
- Topics: awesome, awesome-list, chart, data-vizualization, dataviz, python, visualization, visualize-data
- Homepage:
- Size: 72.3 KB
- Stars: 5
- Watchers: 2
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Security: SECURITY.md
Awesome Lists containing this project
- ultimate-awesome - awesome-python-data-visualization - π list of awesome python data visualization. (Other Lists / PowerShell Lists)
README
# Awesome Python Data Visualization [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
[](https://pyviz.org/)
> Useful Python tools for data visualizations Python frameworks, libraries, and software of Data Visualization
This list is a collection of tools, projects, images, and resources conforming to the [Awesome Manifesto](https://github.com/sindresorhus/awesome/blob/main/awesome.md)
Contributions _very welcome_ but first see [Contributing](CONTRIBUTING.md).
## Table of Contents
- [Core](#core)
- [High-Level Shared API](#high-level-shared-api)
- [High-Level](#high-level)
- [Native-GUI](#native-gui)
- [Other InfoVis](#other-infovis)
- [SciVis](#scivis)
- [Geospatial](#geospatial)
- [Graphs and networks](#graphs-and-networks)
- [Other domain-specific](#other-domain-specific)
- [Large-data rendering](#large-data-rendering)
- [Dashboarding](#dashboarding)
- [Colormapping](#colormapping)
- [Not in PyViz](#not-in-pyviz)## Core
**[`^ back to top ^`](#table-of-contents)**
- [matplotlib](https://matplotlib.org/) - 2D plotting library.
- [plotly](https://plot.ly/python/) - Interactive web based visualization built on top of [plotly.js](https://github.com/plotly/plotly.js)
- [bokeh](https://bokeh.pydata.org/en/latest/) - Interactive Web Plotting for Python.## High-Level Shared API
**[`^ back to top ^`](#table-of-contents)**
## High-Level
**[`^ back to top ^`](#table-of-contents)**
- [altair](https://altair-viz.github.io/) - Declarative statistical visualizations, based on Vega-Lite.
- [seaborn](https://seaborn.pydata.org/) - A library for making attractive and informative statistical graphics.
- [Chartify](https://github.com/spotify/chartify) - Bokeh wrapper that makes it easy for data scientists to create charts.
- [holoviews](https://holoviews.org/) - Complex and declarative visualizations from annotated data.## Native-GUI
**[`^ back to top ^`](#table-of-contents)**
- [PyQtGraph](https://www.pyqtgraph.org/) - Interactive and realtime 2D/3D/Image plotting and science/engineering widgets.
## Other InfoVis
**[`^ back to top ^`](#table-of-contents)**
- [bqplot](https://github.com/bloomberg/bqplot) - Interactive Plotting Library for the Jupyter Notebook.
- [plotnine](https://github.com/has2k1/plotnine) - A grammar of graphics for Python based on ggplot2.
- [pygal](http://www.pygal.org/en/latest/) - A Python SVG Charts Creator.
- [toyplot](https://toyplot.readthedocs.io/en/stable/) - The kid-sized plotting toolkit for Python with grownup-sized goals.## SciVis
**[`^ back to top ^`](#table-of-contents)**
- [glumpy](https://github.com/glumpy/glumpy) - OpenGL scientific visualizations library.
- [mayavi](https://docs.enthought.com/mayavi/mayavi/) - interactive scientific data visualization and 3D plotting in Python.
- [PyVista](https://github.com/pyvista/pyvista) β 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)
- [vedo](https://vedo.embl.es) - Library for scientific analysis and visualization of 3D objects based on VTK.
- [VisPy](https://vispy.org/) - High-performance scientific visualization based on OpenGL.
- [vtk](https://www.vtk.org/) - 3D computer graphics, image processing, and visualization that includes a Python interface.## Geospatial
**[`^ back to top ^`](#table-of-contents)**
- [cartopy](https://github.com/SciTools/cartopy) - A cartographic python library with matplotlib support.
- [GeoVista](https://github.com/bjlittle/geovista) - Cartographic rendering and mesh analytics powered by PyVista.## Graphs and networks
**[`^ back to top ^`](#table-of-contents)**
- [pygraphviz](https://pypi.org/project/pygraphviz/) - Python interface to [Graphviz](http://www.graphviz.org/).
## Other domain-specific
**[`^ back to top ^`](#table-of-contents)**
- [missingno](https://github.com/ResidentMario/missingno) - provides flexible toolset of data-visualization utilities that allows quick visual summary of the completeness of your dataset, based on matplotlib.
## Large-data rendering
**[`^ back to top ^`](#table-of-contents)**
## Dashboarding
**[`^ back to top ^`](#table-of-contents)**
- [dash](https://plot.ly/products/dash/) - Built on top of Flask, React and Plotly aimed at analytical web applications.
- [awesome-dash](https://github.com/Acrotrend/awesome-dash)
- [Streamlit](https://streamlit.io/) - Streamlit turns data scripts into shareable web apps in minutes. All in pure Python. No frontβend experience required.## Colormapping
**[`^ back to top ^`](#table-of-contents)**
## Not in PyViz
**[`^ back to top ^`](#table-of-contents)**
- [diagram](https://github.com/tehmaze/diagram) - Text mode diagrams using UTF-8 characters
- [diagrams](https://github.com/mingrammer/diagrams) - Diagram as Code.
- [ggplot](https://github.com/yhat/ggpy) - plotting system based on [R's](#r-tools) ggplot2.
- [ipychart](https://github.com/nicohlr/ipychart) - The power of Chart.js in Jupyter Notebook.
- [pandas-profiling](https://github.com/pandas-profiling/pandas-profiling) - generates statistical analytic reports with visualization for quick data analysis.
- [pptk](https://github.com/heremaps/pptk) - Visualize and work with 2D/3D pointclouds
- [pyechars](https://github.com/pyecharts/pyecharts) - Python binding for Echarts library.
- [three.py](https://github.com/stemkoski/three.py/) - Easy to use 3D library based on PyOpenGL. Inspired by Three.js.
- [veusz](https://veusz.github.io/) - Python multiplatform GUI plotting tool and graphing library