An open API service indexing awesome lists of open source software.

https://github.com/tom-uchida/depth_peeling_for_point_cloud

Depth peeling for point clouds.
https://github.com/tom-uchida/depth_peeling_for_point_cloud

depth-peeling gaussian-noise image-averaging layer-image noise-robust noise-transparentization outlier point-clouds realistic-visualization

Last synced: about 2 months ago
JSON representation

Depth peeling for point clouds.

Awesome Lists containing this project

README

          

# Depth_Peeling_for_Point_Cloud

## Visualization of peeling process
### Noise Point Clouds
|Gaussian noise (10%)|Outlier noise (10%)|
|:-:|:-:|
|||

### Various Number of Points
|400,000 points (1%)|2,000,000 points (5%)|
|:-:|:-:|
|||

|4,000,000 points (10%)|1,0000,000 points (25%)|
|:-:|:-:|
|||

## New Command
```
#/LayerLevel 1
```

## Usage
```
$ sh config_dp.sh
$ make
$ make install

$ make test_ply_ascii
$ make test_ply_binary
$ make test_spbr_ascii
$ make test_spbr_binary
```

### Example
```
$ cat .param.spbr
#/LayerLevel 20

$ ./dp input.ply

===== Depth Peeling for Point Cloud =====

2021/02/07
Tomomasa Uchida
Ritsumeikan University

USAGE : dp file1.spbr file2.spbr ...
HELP : dp -h

~~~

Executing Depth Peeling "20" times...
Done! ( 0.3871 [sec] )

Automatically, snapshotted.
Saved image path: IMAGE_DATA/OUTPUT_LAYER_IMAGES/LayerImageX.bmp
```