Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/toxtli/awesome-machine-learning-jupyter-notebooks-for-colab
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory
https://github.com/toxtli/awesome-machine-learning-jupyter-notebooks-for-colab
List: awesome-machine-learning-jupyter-notebooks-for-colab
awesome awesome-list awesome-lists deep-learning jupyter-notebook jupyter-notebooks machine-learning
Last synced: about 1 month ago
JSON representation
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory
- Host: GitHub
- URL: https://github.com/toxtli/awesome-machine-learning-jupyter-notebooks-for-colab
- Owner: toxtli
- Created: 2019-10-14T01:50:30.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2019-10-15T21:23:20.000Z (about 5 years ago)
- Last Synced: 2024-05-23T07:20:23.003Z (5 months ago)
- Topics: awesome, awesome-list, awesome-lists, deep-learning, jupyter-notebook, jupyter-notebooks, machine-learning
- Language: Jupyter Notebook
- Homepage: http://www.carlostoxtli.com/#colab-awesome
- Size: 83 KB
- Stars: 278
- Watchers: 11
- Forks: 69
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- ultimate-awesome - awesome-machine-learning-jupyter-notebooks-for-colab - A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory. (Other Lists / PowerShell Lists)
README
[![Logo](awesome.png)](https://www.carlostoxtli.com/#awesome)
# Awesome Machine Learning Jupyter Notebooks for Google Colaboratory [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
> A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory
You can find the credits for the authors in the header of each Jupyter Notebook.
## Contents
- [Machine Learning](#machine-learning)
- [Deep Learning](#deep-learning)
- [Reinforcement Learning](#reinforcement-learning)## Machine Learning
- [Supervised Learning plots](https://www.google.com/url?q=https://colab.research.google.com/drive/1gmZWE7Tynhx1g9vzeqyaMPdO0pdwLmuJ&sa=D&ust=1571021489211000)
- [Unsupervised Learning plots](https://www.google.com/url?q=https://colab.research.google.com/drive/1yWT08sgqswCkuZx06EH3qdZcWTPp2Wvt&sa=D&ust=1571021489212000)
- [Machine Learning Basic concepts 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1ZgDgOcb4NR-u62cFMdZJBPXux95E4wZt&sa=D&ust=1571021489213000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/12X03Yz5Om_ryN9FnuhLvgMe8khB7RUC5&sa=D&ust=1571021489213000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1ldHvgs9qeNIWBCxT0U8OT9SkSisVd4sj&sa=D&ust=1571021489213000) & [4](https://www.google.com/url?q=https://colab.research.google.com/drive/1_6gJHuKOc2-cCLXsNhZ7DW89nF_G1NP-&sa=D&ust=1571021489213000)
- [Linear Regression 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1-dTb2vCiZHa-DnyqlVFGOnMSNjvkIOTP&sa=D&ust=1571021489214000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1Z20iJspQm2Y_wLI51wgE6nXGOSu1kG4W&sa=D&ust=1571021489214000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1-yk3m6p3ylNLtTaEf3nya6exO_wv8f_L&sa=D&ust=1571021489214000)
- [Decision Trees 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1Fc8qs1fwdcpoZ_-tTj32OBl-tCGlAe5c&sa=D&ust=1571021489215000)
- [Random Forest 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1WMOOtaHAMZPi-enVM8RRM_CC-grEtm9P&sa=D&ust=1571021489215000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1jDdWp-CJybMJDX17jBmG5qoPPg9qj1sm&sa=D&ust=1571021489215000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1-uDIRl1aYqmJX59rAJumHY1T20QqBJiQ&sa=D&ust=1571021489216000) & [4](https://www.google.com/url?q=https://colab.research.google.com/drive/1-uDIRl1aYqmJX59rAJumHY1T20QqBJiQ&sa=D&ust=1571021489216000)
- [Naive Bayes 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1qOCllKsBBrLeUnP-XAXHefXCtbuBWl69&sa=D&ust=1571021489216000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/11FiWH00vzygQp1T_pD0MCfMFg6FYsd01&sa=D&ust=1571021489217000)
- [k-Nearest Neighbor 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1GeUVjDW74SxFxz2Nh3rqOlte-S2dblYv&sa=D&ust=1571021489217000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1X12qds10ZfN7QCrmpRR2OXxa--PTyS5e&sa=D&ust=1571021489218000)
- [k-Means 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1RL3oZm6LgnEChI1aOQZoMn1WDk-DQJiV&sa=D&ust=1571021489218000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1yvy1scktjcDyydG2fZz2OJfRFAer0SEO&sa=D&ust=1571021489218000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1CzEf6giBXPSQI5UJOhZrZfYKAJcH68wg&sa=D&ust=1571021489218000)
- [Support Vector Machines 1](https://www.google.com/url?q=https://colab.research.google.com/drive/13PRk-GKeSivp4R-FIdjmYBQS7xWUco9C&sa=D&ust=1571021489219000)
- [Logistic Regression 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1PWmvsZRaj3JQ8rtj6vlwhJhJpOrIAamT&sa=D&ust=1571021489219000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1p8rcrSQB-thLSakUmCHjSbqI6vd-NkCq&sa=D&ust=1571021489220000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1jhrAtmPgg6Uu0WzMzV-VakWlncQAvk-D&sa=D&ust=1571021489220000)
- [Perceptron 1](https://www.google.com/url?q=https://colab.research.google.com/drive/10PvUh-8ZsVqQADqXSmRIDHGiCH9iypyO&sa=D&ust=1571021489220000)
- [Machine Learning Overview 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1s6cBKRS-M0NUtgGhMtbJvGV_H5Zusw3w&sa=D&ust=1571021489220000)
- [Principal Component Analysis 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1CO6BACds6J8hGPYlEU2INnSTpT0EmS74&sa=D&ust=1571021489221000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1VU2SO3IfklPkK1EPMnwiO7trJslt79OZ&sa=D&ust=1571021489221000)
- [Topic modeling 1](https://www.google.com/url?q=https://colab.research.google.com/drive/12O3tgKY_6uppbEVL1PzGRfbo7w69RLQu&sa=D&ust=1571021489221000)
- [Ensembles 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1Kg_nHBmUGQ1zepU-wZlDwMyM-YrlMTUX&sa=D&ust=1571021489233000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1U86EVD-6ulYMxTzDX8-m6nEptYq0yaej&sa=D&ust=1571021489233000)
## Deep Learning
- [GPU testing 1](https://www.google.com/url?q=https://colab.research.google.com/drive/17vJw-LAGhA6OT8KGar8h22NY4STruCSq&sa=D&ust=1571021489222000)
- [Artificial Neural Networks from scratch 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1Vfz7XMI9oubrsQSwN3ZbMC6ph_rJJK_C&sa=D&ust=1571021489222000)
- [ANN Activation functions 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1XQHKjJJs7pWsqCenAiLPx8Y-JnqQrO48&sa=D&ust=1571021489223000)
- [ANN Loss functions 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1YHa7WNP_2hwStfV0CQFJI9SgZIxX4YbB&sa=D&ust=1571021489223000)
- [ANN Gradients 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1xQ1TdpeaLCYnagl_R2C8_ilRl2J-nYO0&sa=D&ust=1571021489223000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1FSepBy85HBrHa8t8aoxY5HKuz4sJ4CAo&sa=D&ust=1571021489223000)
- [ANN Optimizers 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1i4JZOghgXSf98ty2wybcTHm4FkRsJMyM&sa=D&ust=1571021489224000)
- [ANN Decision Boundaries 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1s9Sk2bf7QjNxgiilprauXNCigvmG3Rd8&sa=D&ust=1571021489224000)
- [ANN Overfitting 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1wFUEfNhy3az_hMS5EWZK7c7frpzS5X_N&sa=D&ust=1571021489224000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1QBEtDv70bBYchu2508OJYC_0d_XVrUaD&sa=D&ust=1571021489225000)
- [ANN Regularization 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1Scpx9rb800-hVhjF-F-E8YeTPWTIyQAq&sa=D&ust=1571021489225000)
- [Multi-Layer Perceptron 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1GAYf5yMNBkVrag0z2Q4MPSwuqfRN1Wz_%23scrollTo%3Ds4VYW0i94W_n&sa=D&ust=1571021489225000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/12YBDQFYXN8VruxKTfzDpbPsYFAEQceQP&sa=D&ust=1571021489226000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1pyRqGmMG4-Mj8Wis5XrQ_a4dUJvYln1g&sa=D&ust=1571021489226000) & [4](https://www.google.com/url?q=https://colab.research.google.com/drive/1wHjugM56k0ay5QCmRVMBfAMF96EY7A5k&sa=D&ust=1571021489226000) & [5](https://www.google.com/url?q=https://colab.research.google.com/drive/1Ly0BtKBphUdeqMQBO8Xjweku62Vq3UAX&sa=D&ust=1571021489226000)
- [Convolutional Neural Networks 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1jN8oswBOds4XuRbnQMxxDXDssmDD_rD9&sa=D&ust=1571021489227000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1iEYJs75hat_URxshmCBMGzHQo5VgdRvN%23scrollTo%3DQ4UZVi3DYqbr&sa=D&ust=1571021489227000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1YHKZgpJuriGYjEzFDNGz2Hf0widu-exx&sa=D&ust=1571021489227000) & [4](https://www.google.com/url?q=https://colab.research.google.com/drive/1gi2_Or0rDz5Gg9FkGJjFDxgeiwt5-lXm&sa=D&ust=1571021489227000) & [5](https://www.google.com/url?q=https://colab.research.google.com/drive/1QcnY-LOZU9c7Sp2DsDVeYxLNBx87VNhn&sa=D&ust=1571021489228000) & [6](https://www.google.com/url?q=https://colab.research.google.com/drive/1Il7eimZ5bxQh1qem-NLiwoMBugODltSI&sa=D&ust=1571021489228000) & [7](https://www.google.com/url?q=https://colab.research.google.com/drive/1YHKZgpJuriGYjEzFDNGz2Hf0widu-exx&sa=D&ust=1571021489228000) & [8](https://www.google.com/url?q=https://colab.research.google.com/drive/1iEYJs75hat_URxshmCBMGzHQo5VgdRvN&sa=D&ust=1571021489229000) & [9](https://www.google.com/url?q=https://colab.research.google.com/drive/1w9GxDTBATF6Cc_1582V6uU2OKdQGnp0J&sa=D&ust=1571021489229000)
- [CNN from scratch 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1RqD0OMGFcKBiVIyZIr1qfvM-edWLPY64&sa=D&ust=1571021489229000)
- [Data Augmentation 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1ANIc7tXrggPT2I9JzpBlZQ3BBhCpbJUJ&sa=D&ust=1571021489230000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1cQRVdiDc9xraHZYLu3VrXxX4FKXoaS8U&sa=D&ust=1571021489230000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1O5far2FC4GlAc9pkLPZqsjKreCpI4S_-&sa=D&ust=1571021489230000)
- [Recurrent Neural Networks 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1twc5dBjgFLFuv8p-gPfnrscTPcBlkx5q&sa=D&ust=1571021489231000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/10-ou-Za75bFgwArvgP3QfNJ4cWuwY-eF&sa=D&ust=1571021489231000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1PEOqq8mBcmc-FMj8lpbVF93cQI4RLgVJ&sa=D&ust=1571021489231000) & [4](https://www.google.com/url?q=https://colab.research.google.com/drive/1XUEAFxxKVmdgC7oPOzVpGInXfUeTcgIQ&sa=D&ust=1571021489231000) & [5](https://www.google.com/url?q=https://colab.research.google.com/drive/1tfDDriSDUh_J9OHwjt-NzT8xRiEDQF7x&sa=D&ust=1571021489232000)
- [Autoencoders 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1QxXqnhyqIZrrGtor2tVa4jY63adS4yc0&sa=D&ust=1571021489232000)
- [Generative Adversarial Networks 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1YOYH78YQAgPBRIpUPhh_e0cFLNu-BPVo&sa=D&ust=1571021489232000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/1POZpWN-2M5hy3D2ATWzJs2LC5sk7hpts&sa=D&ust=1571021489232000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1aKywiJ5p0eCwDIIWKe8Q205rcKqmR_VX&sa=D&ust=1571021489233000) & [4](https://www.google.com/url?q=https://colab.research.google.com/drive/1QxXqnhyqIZrrGtor2tVa4jY63adS4yc0&sa=D&ust=1571021489233000) & [5](https://www.google.com/url?q=https://colab.research.google.com/drive/1Lw7BqKABvtiSyUHg9DeM5f90_WFGB7uz&sa=D&ust=1571021489233000)
- [AutoML 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1gTBDfbJy9SsgbUPRhL_mrujw6HC2BjxN&sa=D&ust=1571021489234000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/17Ii6Nw89gZT8l_XrvSQhNWaa_VfcdLBn&sa=D&ust=1571021489234000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/1xe4G_dqsPMq0n3w_Mqlm-39j5TMUqHJR&sa=D&ust=1571021489234000)
## Reinforcement Learning
- [Reinforcement Learning 1](https://www.google.com/url?q=https://colab.research.google.com/drive/1fgv5UWhHR7xSwZfwwltF4OFDYqtWdlQD&sa=D&ust=1571021489235000) & [2](https://www.google.com/url?q=https://colab.research.google.com/drive/14aYmND2LKtaPTW3JWS7scKGwU9baxHeE&sa=D&ust=1571021489235000) & [3](https://www.google.com/url?q=https://colab.research.google.com/drive/16Scl43smvcXGZFEGITs15_SN_7-EidZd&sa=D&ust=1571021489235000)
## Contribute
Contributions welcome! Read the [contribution guidelines](CONTRIBUTING.md) first.
## License
[![CC0](http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg)](http://creativecommons.org/publicdomain/zero/1.0)