Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/trigeorgis/mdm
A TensorFlow implementation of the Mnemonic Descent Method.
https://github.com/trigeorgis/mdm
deep-learning face face-alignment mdm menpo pretrained-models snapchat tensorflow
Last synced: about 2 months ago
JSON representation
A TensorFlow implementation of the Mnemonic Descent Method.
- Host: GitHub
- URL: https://github.com/trigeorgis/mdm
- Owner: trigeorgis
- License: bsd-3-clause
- Created: 2016-06-30T22:20:13.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2022-05-21T17:31:33.000Z (over 2 years ago)
- Last Synced: 2024-08-01T08:11:54.209Z (4 months ago)
- Topics: deep-learning, face, face-alignment, mdm, menpo, pretrained-models, snapchat, tensorflow
- Language: Jupyter Notebook
- Homepage:
- Size: 1.68 MB
- Stars: 124
- Watchers: 12
- Forks: 48
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-tensorflow - Mnemonic Descent Method - Tensorflow implementation of ["Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment"](http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf) (Models/Projects)
- Awesome-TensorFlow-Chinese - Mnemonic Descent Method - Tensorflow implementation of ["Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment"](http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf) (模型项目 / 微信群)
- awesome-tensorflow - Mnemonic Descent Method - Tensorflow implementation of ["Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment"](http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf) (Models/Projects)
- fucking-awesome-tensorflow - Mnemonic Descent Method - Tensorflow implementation of ["Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment"](http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf) (Models/Projects)
README
# MDM
A Tensorflow implementation of the Mnemonic Descent Method.
Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment
G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, S. Zafeiriou.
Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR'16).
Las Vegas, NV, USA, June 2016.# Installation Instructions
## Menpo
We are an avid supporter of the Menpo project (http://www.menpo.org/) which we use
in various ways throughout the implementation.Please look at the installation instructions at:
http://www.menpo.org/installation/
## TensorFlow
Follow the installation instructions of Tensorflow at and install it inside the conda enviroment you have created
https://www.tensorflow.org/versions/r0.9/get_started/os_setup.html#installing-from-sources
but use
git clone https://github.com/trigeorgis/tensorflow.git
as the TensorFlow repo. This is a fork of Tensorflow (#ff75787c) but it includes some
extra C++ ops, such as for the extraction of patches around the landmarks.# Pretrained models
Disclaimer:
The pretrained models can only be used for non-commercial academic purposes.A pretrained model on 300W train set can be found at: https://www.doc.ic.ac.uk/~gt108/theano_mdm.pb
# Training a model
Currently the TensorFlow implementation does not contain the same data augmnetation steps
as we did in the paper, but this will be updated shortly.```
# Activate the conda environment where tf/menpo resides.
source activate menpo
# Start training
python mdm_train.py --datasets='databases/lfpw/trainset/*.png:databases/afw/*.jpg:databases/helen/trainset/*.jpg'
# Track the train process and evaluate the current checkpoint against the validation set
python mdm_eval.py --dataset_path="./databases/ibug/*.jpg" --num_examples=135 --eval_dir=ckpt/eval_ibug --device='/cpu:0' --checkpoint_dir=$PWD/ckpt/train
python mdm_eval.py --dataset_path="./databases/lfpw/testset/*.png" --num_examples=300 --eval_dir=ckpt/eval_lfpw --device='/cpu:0' --checkpoint_dir=$PWD/ckpt/train
python mdm_eval.py --dataset_path="./databases/helen/testset/*.jpg" --num_examples=330 --eval_dir=ckpt/eval_helen --device='/cpu:0' --checkpoint_dir=$PWD/ckpt/train
# Run tensorboard to visualise the results
tensorboard --logdir==$PWD/ckpt
```