Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/vkiller/awesome-gpt

A list for GPT resources
https://github.com/vkiller/awesome-gpt

List: awesome-gpt

Last synced: 16 days ago
JSON representation

A list for GPT resources

Awesome Lists containing this project

README

        

# Awesome GPT
A list for GPT resources

## LLM
- [Introduction to Large Language Models](https://youtu.be/zizonToFXDs)
- [Introduction to Generative AI](https://youtu.be/G2fqAlgmoPo)

## GPT & ChatGPT official

- Architecture [https://openai.com/blog/instruction-following/](https://openai.com/blog/instruction-following/)
- Paper [https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf](https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf)
- About ChatGPT [https://openai.com/blog/chatgpt/](https://openai.com/blog/chatgpt/)
- Instruct GPT [https://arxiv.org/pdf/2203.02155.pdf](https://arxiv.org/pdf/2203.02155.pdf)

## Behind Chat GPT
- Stephen Wolfram [https://www.youtube.com/watch?v=flXrLGPY3SU](https://www.youtube.com/watch?v=flXrLGPY3SU)
- https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/
- 中文翻译 [https://mp.weixin.qq.com/s/Cf9TF4OTEFoPQMOkwRNe6g](https://mp.weixin.qq.com/s/Cf9TF4OTEFoPQMOkwRNe6g)

- Neural Networks: Zero to Hero [https://karpathy.ai/zero-to-hero.html](https://karpathy.ai/zero-to-hero.html)
- Andrej Karpathy: Let's build GPT [https://www.youtube.com/watch?v=kCc8FmEb1nY](https://www.youtube.com/watch?v=kCc8FmEb1nY)
- The simplest, fastest repository for training/finetuning medium-sized GPTs[https://github.com/karpathy/nanoGPT](https://github.com/karpathy/nanoGPT)
- GPT 社會化的過程 [https://www.youtube.com/watch?v=e0aKI2GGZNg](https://www.youtube.com/watch?v=e0aKI2GGZNg)
- Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond [https://github.com/Mooler0410/LLMsPracticalGuide](https://github.com/Mooler0410/LLMsPracticalGuide)
- Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond [https://arxiv.org/pdf/2304.13712.pdf](https://arxiv.org/pdf/2304.13712.pdf)
- [ChatGPT 背后的“功臣”——RLHF 技术详解](https://huggingface.co/blog/zh/rlhf)
- [https://github.com/huggingface/blog/blob/main/zh/rlhf.md](https://github.com/huggingface/blog/blob/main/zh/rlhf.md)
## Amazon NLP

- Multimodal Chain-of-Thought Reasoning in Language Models [https://github.com/amazon-science/mm-cot](https://github.com/amazon-science/mm-cot)
- Paper [https://arxiv.org/pdf/2302.00923.pdf](https://arxiv.org/pdf/2302.00923.pdf)

## Meta NLP

- Paper [https://arxiv.org/abs/2302.13971](https://arxiv.org/abs/2302.13971)
- Repo [https://github.com/facebookresearch/llama](https://github.com/facebookresearch/llama)

## State of GPT

- [https://youtu.be/bZQun8Y4L2A](https://youtu.be/bZQun8Y4L2A)
- [https://karpathy.ai/stateofgpt.pdf](https://karpathy.ai/stateofgpt.pdf)

## Build your own GPT

- I built an AI that answers questions based on my user research data
- [https://uxdesign.cc/i-built-an-ai-that-answers-questions-based-on-my-user-research-data-7207b052e21c](https://uxdesign.cc/i-built-an-ai-that-answers-questions-based-on-my-user-research-data-7207b052e21c)
- Build AI chatbot with custom knowledge base using OpenAI API and GPT Index
[https://www.youtube.com/watch?v=vDZAZuaXf48](https://www.youtube.com/watch?v=vDZAZuaXf48)
- [https://colab.research.google.com/drive/1PQXcM_jhN6QJ7uTkxvNbxoI54r03uSr3?usp=sharing](https://colab.research.google.com/drive/1PQXcM_jhN6QJ7uTkxvNbxoI54r03uSr3?usp=sharing)

- [https://twitter.com/nishuang/status/1627444608937385984](https://twitter.com/nishuang/status/1627444608937385984)

## ChatGPT Prompt Engineering
- 英文原地址[ChatGPT Prompt Engineering for Developers](https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/1/introduction)
- 中文字幕视频[面向开发者的 ChatGPT 提示词工程](https://www.bilibili.com/list/15467823?sid=3247315&spm_id_from=333.999.0.0&desc=1&oid=783015669&bvid=BV1s24y1F7eq)
- [非官方版中英双语字幕](https://github.com/GitHubDaily/ChatGPT-Prompt-Engineering-for-Developers-in-Chinese)

- [吴恩达-prompt工程师课程-思维导图](https://github.com/ZhangHanDong/rustchat/releases/tag/prompt%E5%B7%A5%E7%A8%8B%E5%B8%88%E8%AF%BE%E7%A8%8B%E6%80%9D%E7%BB%B4%E5%AF%BC%E5%9B%BE)
- [微软Token压缩框架](https://github.com/microsoft/LLMLingua)

## Building Systems with the ChatGPT API
- [https://learn.deeplearning.ai/chatgpt-building-system/lesson/1/introduction](https://learn.deeplearning.ai/chatgpt-building-system/lesson/1/introduction)
- [中英文字幕](https://twitter.com/dotey/status/1664335473500626946)

## OpenAI fine-tune
- [https://platform.openai.com/docs/guides/fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
- [https://www.youtube.com/watch?v=mzz1ldrRcuc](https://www.youtube.com/watch?v=mzz1ldrRcuc)

## Microsoft : AI for Beginners
- [https://github.com/Microsoft/AI-For-Beginners](https://github.com/Microsoft/AI-For-Beginners)

## Google : Generative AI learning path
[https://www.cloudskillsboost.google/journeys/118](https://www.cloudskillsboost.google/journeys/118)

[https://cloud.google.com/blog/topics/training-certifications/new-google-cloud-generative-ai-training-resources](https://cloud.google.com/blog/topics/training-certifications/new-google-cloud-generative-ai-training-resources)

- [Introduction to Generative AI](https://youtu.be/G2fqAlgmoPo)
- [Introduction to Large Language Models](https://youtu.be/zizonToFXDs)
- [Introduction to Responsible AI](https://youtu.be/2Pzk7ySufZM)
- [Introduction to Image Generation](https://youtu.be/J0AuVBxzui0)
- [Encoder-Decoder Architecture: Overview](https://youtu.be/qZxtqYlZHnM)
- [Encoder-Decoder Architecture: Lab Walkthrough](https://youtu.be/FW--2KkTQ1s)
- [Attention Mechanism: Overview](https://youtu.be/iYC8eZL2kKw)
- [Transformer Models and BERT Model](https://youtu.be/sUCiDU8GhMA)
- [Transformer Models and BERT Model: Lab Walkthrough](https://youtu.be/6hhvQb8tSPs)
- [Create Image Captioning Models: Overview](https://youtu.be/7a5SMSCzTg8)
- [Create Image Captioning Models: Lab Walkthrough](https://youtu.be/c8VO_Lf1cjA)
- [Introduction to Generative AI Studio](https://youtu.be/uwbMDp3KprU)

## GPT best practices
- [https://platform.openai.com/docs/guides/gpt-best-practices/strategy-write-clear-instructions](https://platform.openai.com/docs/guides/gpt-best-practices/strategy-write-clear-instructions)

## LangChain for LLM Application Development
- [https://learn.deeplearning.ai/langchain/lesson/1/introduction](https://learn.deeplearning.ai/langchain/lesson/1/introduction)
- [中英文](https://www.youtube.com/watch?v=gUcYC0Iuw2g&list=PLiuLMb-dLdWIYYBF3k5JI_6Od593EIuEG)

# GPT Tools
- [https://github.com/microsoft/guidance](https://github.com/microsoft/guidance)

# GPT Practices
## Azure Cognitive Search & OpenAI
- [https://cognitivesearchgpt.chinacloudsites.cn/](https://cognitivesearchgpt.chinacloudsites.cn/)
- [https://github.com/Azure-Samples/azure-search-openai-demo/](https://github.com/Azure-Samples/azure-search-openai-demo/)
- [https://youtu.be/iS36n9rO6OQ](https://youtu.be/iS36n9rO6OQ)

# MLOps
- [https://github.com/visenger/awesome-mlops](https://github.com/visenger/awesome-mlops)
- [https://github.com/microsoft/MLOps](https://github.com/microsoft/MLOps)

# Repos
- [https://github.com/Hannibal046/Awesome-LLM](https://github.com/Hannibal046/Awesome-LLM)

# NLP & NLU & NER & UIE & lib
- [https://github.com/axa-group/nlp.js](https://github.com/axa-group/nlp.js)
- [https://github.com/snipsco/snips-nlu](https://github.com/snipsco/snips-nlu)
- [https://github.com/RasaHQ/rasa](https://github.com/RasaHQ/rasa)
- [https://github.com/PaddlePaddle/PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)
- [https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie)
- 意图识别 [https://github.com/taishan1994/pytorch_bert_intent_classification_and_slot_filling](https://github.com/taishan1994/pytorch_bert_intent_classification_and_slot_filling)

[NER相关](https://github.com/topics/named-entity-recognition)

# Fine-Tuning Large Language Models
- [https://youtu.be/QyptrmzGJwc?t=188](https://youtu.be/QyptrmzGJwc?t=188)
- [https://magazine.sebastianraschka.com/p/finetuning-large-language-models](https://magazine.sebastianraschka.com/p/finetuning-large-language-models)
- [https://magazine.sebastianraschka.com/p/finetuning-llms-with-adapters](https://magazine.sebastianraschka.com/p/finetuning-llms-with-adapters)
- [https://magazine.sebastianraschka.com/p/understanding-parameter-efficient](https://magazine.sebastianraschka.com/p/understanding-parameter-efficient)

# NL2SQL
- [https://hex.tech/](https://hex.tech/)
- [https://github.com/chat2db/Chat2DB](https://github.com/chat2db/Chat2DB)
- [https://github.com/vanna-ai/vanna](https://github.com/vanna-ai/vanna)
- [https://youtu.be/mixwxOLSeFE](https://youtu.be/mixwxOLSeFE)

# RAG
- [https://arxiv.org/abs/2312.10997](https://arxiv.org/abs/2312.10997)
- [https://github.com/embedchain/embedchain](https://github.com/embedchain/embedchain)
- [https://github.com/StanGirard/quivr](https://github.com/StanGirard/quivr)
- [https://github.com/langgenius/dify](https://github.com/langgenius/dify)
- [https://github.com/explodinggradients/ragas](https://github.com/explodinggradients/ragas)
- [https://github.com/infiniflow/ragflow](https://github.com/infiniflow/ragflow)
- [https://github.com/microsoft/graphrag](https://github.com/microsoft/graphrag)

# Knowledge base
- [https://github.com/labring/FastGPT](https://github.com/labring/FastGPT)
- [https://github.com/1Panel-dev/MaxKB](https://github.com/1Panel-dev/MaxKB)

# Agents & Chain-of-Thought
- [LLM Powered Autonomous Agents](https://lilianweng.github.io/posts/2023-06-23-agent/)
- [Language Models Perform Reasoning via Chain of Thought](https://blog.research.google/2022/05/language-models-perform-reasoning-via.html)
- [Chain-of-Thought Prompting Elicits Reasoning in Large Language Models](https://arxiv.org/pdf/2201.11903.pdf)
- [AUTOMATIC CHAIN OF THOUGHT PROMPTING IN LARGE LANGUAGE MODELS](https://arxiv.org/pdf/2210.03493.pdf)
- [A trend starts from "Chain of Thought Prompting Elicits Reasoning in Large Language Models"](https://github.com/Timothyxxx/Chain-of-ThoughtsPapers)
- [Paper collection on building and evaluating language model agents via executable language grounding](https://github.com/xlang-ai/xlang-paper-reading)
- [https://pub.towardsai.net/chain-of-thought-reasoning-a3d531aa8054](https://pub.towardsai.net/chain-of-thought-reasoning-a3d531aa8054)
- [https://www.microsoft.com/en-us/research/blog/autogen-enabling-next-generation-large-language-model-applications/](https://www.microsoft.com/en-us/research/blog/autogen-enabling-next-generation-large-language-model-applications/)
- [https://browse.arxiv.org/pdf/2308.08155.pdf](https://browse.arxiv.org/pdf/2308.08155.pdf)
- [https://github.com/microsoft/autogen](https://github.com/microsoft/autogen)
- [Structured Chain-of-Thought Prompting for Code Generation](https://arxiv.org/pdf/2305.06599.pdf)
- [Self-planning Code Generation with Large Language Models](https://arxiv.org/pdf/2303.06689.pdf)

# Voice
- [https://github.com/myshell-ai/OpenVoice](https://github.com/myshell-ai/OpenVoice)
- [https://github.com/2noise/ChatTTS](https://github.com/2noise/ChatTTS)

# ChatGPT style WEB UI
- [https://github.com/open-webui/open-webui](https://github.com/open-webui/open-webui)
- [https://github.com/mckaywrigley/chatbot-ui](https://github.com/mckaywrigley/chatbot-ui)

# Open Model
- [https://github.com/ollama/ollama](https://github.com/ollama/ollama)

# Open Chat
- [https://github.com/lobehub/lobe-chat](https://github.com/lobehub/lobe-chat)
-

# SDK & Example
- [Flutter & ChatGPT](https://github.com/iampawan/ChatGPT-Flutter-AIChatBot)