Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/xahidbuffon/Awesome_Underwater_Datasets

Pointers to large-scale underwater datasets and relevant resources.
https://github.com/xahidbuffon/Awesome_Underwater_Datasets

List: Awesome_Underwater_Datasets

detection imagery marine-data marine-resources marine-species stereo-data underwater-datasets underwater-image underwater-images underwater-robotics underwater-vehicles

Last synced: 29 days ago
JSON representation

Pointers to large-scale underwater datasets and relevant resources.

Awesome Lists containing this project

README

        

## Image Enhancement, Color Correction/Restoration
- EUVP dataset: [Data](http://irvlab.cs.umn.edu/resources/euvp-dataset), [Paper](https://arxiv.org/abs/1903.09766), [Code](https://github.com/xahidbuffon/funie-gan). (paired and unpaired data; FUnIE-GAN)
- Underwater imagenet: [Data](http://irvlab.cs.umn.edu/resources/), [Paper](https://ieeexplore.ieee.org/document/8460552), [Code](https://github.com/cameronfabbri/Underwater-Color-Correction). (paired data; UGAN)
- UIEBD dataset: [Data](https://li-chongyi.github.io/proj_benchmark.html), [Paper](https://arxiv.org/abs/1901.05495), [Code](https://github.com/Li-Chongyi/Water-Net_Code). (Water-Net)
- SQUID dataset: [Data](http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_forwardlooking/index.html), [Paper](https://arxiv.org/abs/1811.01343), [Code](https://github.com/danaberman/underwater-hl). (Underwater-HL)
- U-45: [Data](https://github.com/IPNUISTlegal/underwater-test-dataset-U45-), [Paper](https://arxiv.org/abs/1906.06819). (UDAE)
- RUIE benchmark: [Data](https://github.com/dlut-dimt/Realworld-Underwater-Image-Enhancement-RUIE-Benchmark), [Paper](https://arxiv.org/abs/1901.05320). (RUIE-Net)
- Jamaica port royal: [Data](https://github.com/kskin/data), [Paper](https://arxiv.org/abs/1702.07392), [Code](https://github.com/kskin/WaterGAN/). (Water-GAN)
- Virtual periscope: [Data](http://webee.technion.ac.il/~yoav/research/random_distort.html), [Paper](https://ieeexplore.ieee.org/abstract/document/7448905).
- Color correction: [Data](https://web.whoi.edu/singh/underwater-imaging/datasets/color-correction/).
- Color restoration: [Data](http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_forwardlooking/index.html), [Paper](https://arxiv.org/abs/1811.01343), [Code](https://github.com/danaberman/underwater-hl).
- TURBID data: [Data](http://amandaduarte.com.br/turbid/), [Paper](https://ieeexplore.ieee.org/abstract/document/7485524).
- OceanDark dataset: [Data](https://sites.google.com/view/oceandark/home), [Paper](https://www.mdpi.com/2313-433X/5/10/79).

## SISR: Single Image Super-Resolution
- USR-248: [Data](http://irvlab.cs.umn.edu/resources/usr-248-dataset), [Paper](https://arxiv.org/abs/1909.09437), [Code](https://github.com/xahidbuffon/srdrm). (for 2x, 4x, and 8x training; SRDRM, SRDRM-GAN)

## RGB-D: Monocular Depth Estimation
- USOD10k: [Data](https://github.com/LinHong-HIT/USOD10K), [Paper](https://ieeexplore.ieee.org/document/10102831). [UDepth paper](https://ieeexplore.ieee.org/abstract/document/10161471)

## SESR: Simultaneous Enhancement and Super-Resolution
- UFO-120: [Data](http://irvlab.cs.umn.edu/resources/ufo-120-dataset), [Paper](https://arxiv.org/pdf/2002.01155.pdf), [Code](https://github.com/xahidbuffon/Deep-SESR). (for 2x, 3x, and 4x SESR and saliency prediction; Deep SESR)

## Image Segmentation
- SUIM: [Data](http://irvlab.cs.umn.edu/resources/suim-dataset), [Paper](https://arxiv.org/pdf/2004.01241.pdf), [Code](https://github.com/xahidbuffon/SUIM-Net). (SUIM-Net)
- Coral-Net: [Data](https://coralnet.ucsd.edu/), [Paper](https://onlinelibrary.wiley.com/doi/full/10.1002/rob.21915), [Code](https://github.com/Shathe/CoralSeg). (Coral-Seg)
- Eilat: [Data](https://sites.google.com/a/unizar.es/semanticseg/), [Paper](https://www.nature.com/articles/srep23166.pdf).
- Change detection: [Data](http://underwaterchangedetection.eu/index.html), [Paper](https://ieeexplore.ieee.org/document/7761129).
- LIACI: [Data](https://liaci.sintef.cloud/), [Paper](https://ieeexplore.ieee.org/document/9998080).

## SOD: Salient Object Detection
- USOD10k: [Data](https://github.com/LinHong-HIT/USOD10K), [Paper](https://ieeexplore.ieee.org/document/10102831).
- UFO-120: [Data](http://irvlab.cs.umn.edu/resources/ufo-120-dataset), [Paper](https://arxiv.org/pdf/2002.01155.pdf), [Code](https://github.com/xahidbuffon/Deep-SESR)
- MUED database: [Data-1](https://zenodo.org/record/2542305#.X0YMt3UzY5k), [Data-2](https://zenodo.org/record/2542307#.X0YM53UzY5k), [Paper](https://www.sciencedirect.com/science/article/abs/pii/S1568494619302169)

## Object Detection/Classification
#### A. General
- MOUSS data: [Data](https://www.viametoolkit.org/cvpr-2018-workshop-data-challenge/challenge-data-description/). (CVPR 2018 workshop challenge)
- MBARI databse: [Data](https://www.mbari.org/products/data-repository/).
- HabCam database: [Data](https://habcam.whoi.edu/).
- OUC-vision: [Paper](https://ieeexplore.ieee.org/abstract/document/8019324).
- MARIS project: [Data](http://rimlab.ce.unipr.it/Maris.html).
- NOAA data: [Data](https://marineresearchpartners.com/nmfs_aiasi/DataSets.html).
- Aqualoc dataset: [Data](http://www.lirmm.fr/aqualoc/), [Paper](https://arxiv.org/abs/1910.14532). (visual-inertial-pressure localization)
- Brackish dataset: [Data](https://www.kaggle.com/aalborguniversity/brackish-dataset/data), [Paper](https://www.researchgate.net/publication/333972548_Detection_of_Marine_Animals_in_a_New_Underwater_Dataset_with_Varying_Visibility).
- SUN database (underwater scenes): [Data](http://groups.csail.mit.edu/vision/SUN/).
- FathomNet (image database): [Data](http://fathomnet.org/fathomnet/#/).

#### B. Human-robot cooperation
- Diver detection: [Data](http://irvlab.cs.umn.edu/resources), [Paper](https://ieeexplore.ieee.org/document/8543168).
- Robot tracking by detection: [Data](http://www.cim.mcgill.ca/~mrl/), [Paper](https://ieeexplore.ieee.org/document/8206280).
- CADDY diver pose data: [Data](http://caddy-underwater-datasets.ge.issia.cnr.it//CADDY-Underwater-Diver-Pose-Dataset), [Paper](https://www.mdpi.com/2077-1312/7/1/16).

#### C. Coral-reef
- Moorea corals (UCSD): [Data](http://vision.ucsd.edu/content/moorea-labeled-corals), [Paper](https://ieeexplore.ieee.org/abstract/document/6247798).
- Coral-reef Puerto Rico: [Data](https://web.whoi.edu/singh/underwater-imaging/datasets/coral-reef-puerto-rico/).
- Coral-Net: [Data](https://coralnet.ucsd.edu/).

#### D. Fish
- WildFish database: [Data](https://github.com/PeiqinZhuang/WildFish), [Paper](https://dl.acm.org/citation.cfm?id=3240616).
- Labeled fishes: [Data](https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/), [Paper](https://ieeexplore.ieee.org/abstract/document/7046815).
- Fish4Knowledge data: [Data](http://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/).
- Fish database: [Data](http://www.fishdb.co.uk/).
- AQUALIFEIMAGES database: [Data](http://www.aqualifeimages.com/).
- Rockfish: [Data](https://web.whoi.edu/singh/underwater-imaging/datasets/rockfish/).
- Fish recognition data: [Data](http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/RECOG/), [Paper](https://homepages.inf.ed.ac.uk/rbf/PAPERS/PID2432553.pdf).
- Oceanwide images: [Data](http://www.oceanwideimages.com/).
- Fish detection and tracking: [Data](http://www.perceivelab.com/index-dataset.php?name=Fish_Detection), [Paper](http://groups.inf.ed.ac.uk/f4k/PAPERS/MTAP-Perla.pdf).
- Fish trajectory detection: [Data](http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/BEHAVIOR/), [Paper](http://www.bmva.org/bmvc/2013/Papers/paper0021/paper0021.pdf).

#### E. Trash and marine debris
- TrashCan: [Data](https://conservancy.umn.edu/handle/11299/214865), [Paper](https://arxiv.org/abs/2007.08097)
- Trash-ICRA19: [Data](https://conservancy.umn.edu/handle/11299/214366), [Paper](https://ieeexplore.ieee.org/document/8793975)
- Deep-sea debris database: [Data](http://www.godac.jamstec.go.jp/catalog/dsdebris/e/index.html), [Paper](https://ieeexplore.ieee.org/abstract/document/8793975).
- Tiny plastics posing threat to turtles: [Data](https://www.dropbox.com/sh/53jzl8w8smydrdb/AAC_oST5MGxJ2VL-rcoTpxhXa), [Paper](http://europepmc.org/abstract/med/29475719).

## 6. Acoustic Data
- Five-element acoustic dataset: [Data](http://users.ece.utexas.edu/~bevans/projects/underwater/datasets/), [Paper](http://users.ece.utexas.edu/~bevans/projects/underwater/datasets/ARLUT_01_doc_01.pdf).
- DIDSON dataset: [Data1](https://osf.io/sxek6/), [Data2](https://osf.io/xy32d/), [Data3](https://figshare.com/collections/An_Underwater_Observation_Dataset_for_Fish_Classification_and_Fishery_Ecology/4039202), [Paper](https://www.nature.com/articles/sdata2018190). (fishery classification and assessment)
- Spectrogram Analysis: [Data](https://sites.google.com/site/tomalampert/data-sets?authuser=0), [Paper](https://www.sciencedirect.com/science/article/pii/S0031320312004712).
- Caves sonar and vision data: [Data](https://cirs.udg.edu/caves-dataset/), [Paper](https://journals.sagepub.com/doi/pdf/10.1177/0278364917732838).

## Stereo Data
- Tasmania coral point, Scott reef-25, O'Hara-7: [Data](http://marine.acfr.usyd.edu.au/datasets/index.html), [Paper](https://ieeexplore.ieee.org/abstract/document/5652480).
- Stereo from Flicker: [Data](http://webee.technion.ac.il/~yoav/research/flicker.html), [Paper](https://ieeexplore.ieee.org/abstract/document/6528294).
- CADDY stereo data: [Data](http://caddy-underwater-datasets.ge.issia.cnr.it/), [Paper](https://www.mdpi.com/2077-1312/7/1/16).
- HIMB data for UWStereoNet: [Data](https://github.com/kskin/data), [Paper](https://ieeexplore.ieee.org/abstract/document/8794272). (UW-StereoNet)
- SQUID dataset: [Data](http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_forwardlooking/index.html), [Paper](https://arxiv.org/abs/1811.01343)

## Docking Data
- Underwater Docking Images Dataset(UDID): [Data](http://vision.is.tohoku.ac.jp/~liushuang/a-vision-based-underwater-docking-system/dataset/), [Paper](https://arxiv.org/abs/1712.04138).

## Temperature Data
- Underwater temperature dataset: [Data](https://www.seanoe.org/data/00510/62120/).