Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yousefis/awesome_medical

Awesome m
https://github.com/yousefis/awesome_medical

List: awesome_medical

Last synced: 23 days ago
JSON representation

Awesome m

Awesome Lists containing this project

README

        

# Awesome medical image processing projects

## Segmentation
| paper | Modality |Lib|Dataset|Network|Paper(s)
| --- | --- | --- | --- | --- |---|
| [abdominal-multi-organ-segmentation](https://github.com/assassint2017/abdominal-multi-organ-segmentation) | CT |pytorch|[Multi-Atlas Labeling Beyond the Cranial Vault ](https://www.synapse.org/#!Synapse:syn3193805/wiki/217752)|Composed of two U-shape like 3D FCN||
|[Abdomen-CT-Image-Segmentation](https://github.com/tureckova/Abdomen-CT-Image-Segmentation)|CT|Pytorch||Unet and Vnet|[1](https://www.frontiersin.org/articles/10.3389/frobt.2020.00106/full)|
|[3Dunet_abdomen_cascade](https://github.com/holgerroth/3Dunet_abdomen_cascade)|CT|-||Unet|[1](https://arxiv.org/pdf/1803.05431.pdf)|
|[Multi-Organ-Segmentation](https://github.com/Prayushi9/Multi-Organ-Segmentation)|CT|Keras|-|ResNet|-|
|[CHAOS_GCN](https://github.com/armyja/CHAOS_GCN)|CT/MR|pytorch|-|[Global Convolutional Network](https://github.com/SConsul/Global_Convolutional_Network)|-|
|[OrganSegC2F](https://github.com/198808xc/OrganSegC2F)|CT|Caffe||||
|[fcn_vatsat](https://github.com/tarolangner/fcn_vatsat)||||||
|[DenseVNet3D_Segmentation](https://github.com/fitushar/DenseVNet3D_Chest_Abdomen_Pelvis_Segmentation_tf2)||||||
|[3D-Medical-Imaging-Preprocessing](https://github.com/fitushar/3D-Medical-Imaging-Preprocessing-All-you-need)||||||
|[deedsBCV](https://github.com/mattiaspaul/deedsBCV)||||||
|[CEAL-Medical-Image-Segmentation](https://github.com/marc-gorriz/CEAL-Medical-Image-Segmentation)||||||
|[medical-image-segmentation](https://github.com/topics/medical-image-segmentation)||||||
|[MIScnn](https://github.com/frankkramer-lab/MIScnn)||||||
|[SOTA-MedSeg](https://github.com/JunMa11/SOTA-MedSeg)||||||
|[Medical-Transformer](https://github.com/jeya-maria-jose/Medical-Transformer)||||||
|[medical_image_segmentation](https://github.com/CVxTz/medical_image_segmentation)||||||
|[CA-Net](https://github.com/HiLab-git/CA-Net)||||||
|[medical-image-segmentation](https://github.com/sudohainguyen/medical-image-segmentation)||||||
|[Multi-Scale-Attention](https://github.com/sinAshish/Multi-Scale-Attention)||||||
|[deepmedic](https://github.com/deepmedic/deepmedic)||||||
|[torchio](https://github.com/fepegar/torchio)||||||
|[MedicalZooPytorch](https://github.com/black0017/MedicalZooPytorch)||||||
|[u-net-brain-tumor](https://github.com/zsdonghao/u-net-brain-tumor)||||||
|[DenseUnet_Esophagus_Segmentation](https://github.com/yousefis/DenseUnet_Esophagus_Segmentation)|CT|TF|-|DDAUnet|[1](https://ieeexplore.ieee.org/document/9481104),[2](https://link.springer.com/chapter/10.1007/978-3-030-00937-3_40)|

## Registration
* [Elastix](https://github.com/SuperElastix/elastix)
* [AbdomenCT-1K](https://github.com/JunMa11/AbdomenCT-1K)
* [registration_tutorial](https://github.com/MASILab/registration_tutorial)
* [abdominal_registration](https://github.com/TheoEst/abdominal_registration)
* [drop2](https://github.com/biomedia-mira/drop2)
* [RegNet](https://github.com/hsokooti/RegNet)
* [RegUn](https://github.com/hsokooti/RegUn)
* [istn](https://github.com/biomedia-mira/istn)
* [OneShotImageRegistration](https://github.com/ToFec/OneShotImageRegistration)
* [registration](https://github.com/uncbiag/registration)
* [ICNet](https://github.com/zhangjun001/ICNet)
* [image-registration-cnn](https://github.com/shreshth211/image-registration-cnn)
* [pdd_net](https://github.com/multimodallearning/pdd_net)
* [Recursive-Cascaded-Networks](https://github.com/microsoft/Recursive-Cascaded-Networks)
* [voxelmorph](https://github.com/voxelmorph/voxelmorph)
* [Medical-image-registration](https://github.com/dykuang/Medical-image-registration)
* [label-reg](https://github.com/YipengHu/label-reg)
* [ANTsPyNet](https://github.com/ANTsX/ANTsPyNet)
* [path_planning_for_FEVAR](https://github.com/jianqingzheng/path_planning_for_FEVAR)
* [DeepLearningInMedicalImagingAndMedicalImageAnalysis](https://github.com/shawnyuen/DeepLearningInMedicalImagingAndMedicalImageAnalysis)

## Classification
* [Medical-Image-Classification](https://github.com/ljbatwh/Medical-Image-Classification)
* [Medical-Image-Classification-using-deep-learning](https://github.com/21Vipin/Medical-Image-Classification-using-deep-learning)
* [Hello_World_Deep_Learning](https://github.com/paras42/Hello_World_Deep_Learning)
* [X-ray-images-classification](https://github.com/faust-prime/X-ray-images-classification-with-Keras-TensorFlow)
* [Survival_classification](https://github.com/GKaramiMP/Survival_classification)

## Detection
* [Brain-Tumor-Detection-from-MRI-Scans](https://github.com/muhammadsanaullah/Brain-Tumor-Detection-from-MRI-Scans)
* [medicaldetectiontoolkit](https://github.com/MIC-DKFZ/medicaldetectiontoolkit)

## Reconstruction
* [fastMRI](https://github.com/facebookresearch/fastMRI)
* [Hadamard-te-ASL-recon](https://github.com/yousefis/Hadamard-te-ASL-recon)
*

## Others
* [DLTK](https://github.com/DLTK/DLTK)
* [medicaltorch](https://github.com/perone/medicaltorch)
* [dipy](https://github.com/dipy/dipy)
* [ASL2PET](https://github.com/yousefis/ASL2PET)