Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zhaoxin94/awesome-gan
A collection of AWESOME things about GAN
https://github.com/zhaoxin94/awesome-gan
List: awesome-gan
deep-learning gan generative-adversarial-network image-translation
Last synced: about 1 month ago
JSON representation
A collection of AWESOME things about GAN
- Host: GitHub
- URL: https://github.com/zhaoxin94/awesome-gan
- Owner: zhaoxin94
- Created: 2018-07-16T02:52:09.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-04-27T12:13:17.000Z (over 5 years ago)
- Last Synced: 2024-05-21T08:33:50.708Z (7 months ago)
- Topics: deep-learning, gan, generative-adversarial-network, image-translation
- Homepage:
- Size: 31.3 KB
- Stars: 47
- Watchers: 6
- Forks: 15
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-of-awesome-ml - awesome-gan (by zhaoxin94)
- ultimate-awesome - awesome-gan - A collection of AWESOME things about GAN. (Other Lists / PowerShell Lists)
README
# awesome-gan
This repo is a collection of AWESOME things about Generative Adversarial Networks,including papers,code etc.Feel free to star and fork.# Contents
- [Papers](#papers)
- [Overview](#overview)
- [GAN Theory](#gan-theory)
- [Training GANs](#training-gans)
- [GAN Architectures](#gan-architectures)
- [Conditional GANs](#conditional-gans)
- [Latent Space](#latent-space)
- [Evaluation](#evaluation)
- [Others](#others)
- [Applications Using GANs](#applications-using-gans)
- [Image Synthesis](#image-synthesis)
- [Image translation](#image-translation)
- [Domain Adaptation](#domain-adaptation)
- [Super Resolution](#super-resolution)
- [Semi-Supervised Learning](#semi-supervised-learning)
- [Low Level Image Process](#low-level-image-process)
- [Text to Image](#text-to-image)
- [Object Detection](#object-detection)
- [Semantic Segmentation](#semantic-segmentation)
- [Medical Images](#medical-images)
- [Other Applications](#other-applications)
- [Other Resources](#other-resources)
- [Selected](#selected)# Papers
## Overview
- How Generative Adversarial Networks and Their Variants Work: An Overview [[arXiv 13 Nov 2018]](https://arxiv.org/abs/1711.05914v9)## GAN Theory
## Training GANs
- Improved Techniques for Training GANs [[NIPS2016]](https://papers.nips.cc/paper/6125-improved-techniques-for-training-gans) [[Pytorch]](https://github.com/Sleepychord/ImprovedGAN-pytorch)## GAN Architectures
- Domain Partitioning Network [[arXiv]](https://arxiv.org/abs/1902.08134v1)
- A Style-Based Generator Architecture for Generative Adversarial Networks [[arXiv 12 Dec 2018]](https://arxiv.org/abs/1812.04948v1)
- Self-Attention Generative Adversarial Networks [[arXiv 21 May 2018]](https://arxiv.org/abs/1805.08318)## Conditional GANs
- Diversity-Sensitive Conditional Generative Adversarial Networks [[ICLR2019]](https://openreview.net/forum?id=rJliMh09F7)
- Robust Conditional Generative Adversarial Networks [[ICLR2019]](https://openreview.net/forum?id=Byg0DsCqYQ)
- Harmonizing Maximum Likelihood with GANs for Multimodal Conditional Generation [[ICLR2019]](https://openreview.net/forum?id=HJxyAjRcFX)
- cGANs with Projection Discriminator [[ICLR2018]](https://openreview.net/forum?id=ByS1VpgRZ)
## Latent Space## Evaluation
## Others
- Self-Supervised Generative Adversarial Networks [[CVPR2019]](https://arxiv.org/pdf/1811.11212.pdf)
- Label-Removed Generative Adversarial Networks Incorporating with K-Means [[arXiv 19 Feb 2019]](https://arxiv.org/abs/1902.06938v1)## Applications Using GANs
### Image Synthesis
- Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis [[CVPR2019]](https://arxiv.org/abs/1903.05628v1)### Image translation
- CollaGAN : Collaborative GAN for Missing Image Data Imputation [[CVPR2019]](https://arxiv.org/abs/1901.09764)### Domain Adaptation
### Super-resolution
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [[CVPR2017]](http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf) [[Pytorch]](https://github.com/leftthomas/SRGAN) [[Pytorch]](https://github.com/aitorzip/PyTorch-SRGAN)
- ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks [[ECCV2018 workshop]](https://arxiv.org/abs/1809.00219) [[Pytorch]](https://github.com/xinntao/ESRGAN)### Semi-supervised Learning
- Good Semi-supervised Learning That Requires a Bad GAN [[NIPS2017]](http://papers.nips.cc/paper/7229-good-semi-supervised-learning-that-requires-a-bad-gan)
- Triple Generative Adversarial Nets [[NIPS2017]](https://papers.nips.cc/paper/6997-triple-generative-adversarial-nets)
- Improved Techniques for Training GANs [[NIPS2016]](https://papers.nips.cc/paper/6125-improved-techniques-for-training-gans)
- Semi-Supervised Learning with Generative Adversarial Networks [[arXiv 2016]](https://arxiv.org/abs/1606.01583)
- Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks [[arXiv 2015]](https://arxiv.org/abs/1511.06390)### Low Level Image Process
### Text to Image
- Generative Adversarial Text to Image Synthesis [[ICML2016]](http://proceedings.mlr.press/v48/reed16.pdf) [[Pytorch]](https://github.com/aelnouby/Text-to-Image-Synthesis)### Object Detection
### Semantic Segmentation
### Data Augmentation
- Learning to Compose Domain-Specific Transformations for Data Augmentation[[NIPS2017]](https://papers.nips.cc/paper/6916-learning-to-compose-domain-specific-transformations-for-data-augmentation.pdf)
- BAGAN: Data Augmentation with Balancing GAN [[arXiv 5 Jun 2018]](https://arxiv.org/abs/1803.09655v2)### Medical Images
#### Survey
- Generative Adversarial Network in Medical Imaging: A Review [[arXiv 19 Sep 2018]](https://arxiv.org/abs/1809.07294v1)#### Image Classification
- GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification [[arXiv 3 Mar 2018]](https://arxiv.org/abs/1803.01229)
- Synthetic Data Augmentation using GAN for Improved Liver Lesion Classification [[ISBI 2018]](https://arxiv.org/abs/1801.02385v1)#### Others
- General-to-Detailed GAN for Infrequent Class Medical Images [[arXiv 28 Nov 2018]](https://arxiv.org/abs/1812.01690)### Other Applications
- MEAL: Multi-Model Ensemble via Adversarial Learning [[AAAI2019]](https://arxiv.org/abs/1812.02425) [[Pytorch(official)]](https://github.com/AaronHeee/MEAL)# Other Resources
[the-gan-zoo](https://github.com/hindupuravinash/the-gan-zoo)[GAN-Timeline](https://github.com/dongb5/GAN-Timeline)
[really-awesome-gan](https://github.com/nightrome/really-awesome-gan)
[AdversarialNetsPapers](https://github.com/zhangqianhui/AdversarialNetsPapers)
[Awesome GAN for Medical Imaging](https://github.com/xinario/awesome-gan-for-medical-imaging)
# Selected
- A Style-Based Generator Architecture for Generative Adversarial Networks [[arXiv 12 Dec 2018]](https://arxiv.org/abs/1812.04948v1)
- Supervised Generative Adversarial Networks [[CVPR2019]](https://arxiv.org/pdf/1811.11212.pdf)
- Self-Attention Generative Adversarial Networks [[arXiv 21 May 2018]](https://arxiv.org/abs/1805.08318)