Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zhenyuanlu/awesome-pain-intensity-classification-papers
A comprehensive list of pain intensity classification papers mainly based on deep learning algorithms
https://github.com/zhenyuanlu/awesome-pain-intensity-classification-papers
List: awesome-pain-intensity-classification-papers
classification deep-learning machine-learning pain pain-classification paper-list
Last synced: 3 months ago
JSON representation
A comprehensive list of pain intensity classification papers mainly based on deep learning algorithms
- Host: GitHub
- URL: https://github.com/zhenyuanlu/awesome-pain-intensity-classification-papers
- Owner: zhenyuanlu
- License: cc-by-sa-4.0
- Created: 2023-03-03T16:07:08.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-10-16T13:37:30.000Z (about 1 year ago)
- Last Synced: 2024-04-22T02:39:24.479Z (7 months ago)
- Topics: classification, deep-learning, machine-learning, pain, pain-classification, paper-list
- Homepage:
- Size: 13.7 KB
- Stars: 2
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-pain-intensity-classification-papers - A comprehensive list of pain intensity classification papers mainly based on deep learning algorithms. (Other Lists / PowerShell Lists)
README
# Awesome Pain Intensity Classification Papers
[![Awesome](https://awesome.re/badge.svg)](https://awesome.re)(to be updated)
### A comprehensive list of pain intensity classification papers and the dataset used.
#### Any contribution is welcome!
## Latest Review/Survey papers
Year | Topic
------------ | -------------
2023 | [Review and Analysis of Pain Research Literature through Keyword Co-occurrence Networks](https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000331)
*Plos Digital Health*
2021 | [Pain and Stress Detection Using Wearable Sensors and Devices—A Review](https://www.mdpi.com/1424-8220/21/4/1030/htm)
*sensors*|
2021 | [Machine Learning in Pain Medicine: An Up-To-Date Systematic Review](https://link.springer.com/article/10.1007/s40122-021-00324-2)
*Pain and Therapy*|
2020 | [Sensor Technologies to Manage the Physiological Traits of Chronic Pain: A Review](https://www.mdpi.com/1424-8220/20/2/365)
*sensors*|
2020 | [Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review](https://www.mdpi.com/1424-8220/20/2/479)
*sensors* | EDA
2019 | [Automatic Recognition Methods Supporting Pain Assessment: A Survey](https://ieeexplore.ieee.org/document/8865626)
*IEEE Transactions on Affective Computing*
2018 | [A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases](https://ieeexplore.ieee.org/abstract/document/8120021?casa_token=vlTu8ZNya2cAAAAA:1lVPRHsReLitOUv33Eyz2LQomFrskQwKLoE-w7op_c3u3sdCcJFgLYlT4vMmDJE-mSQjxvivlSY)
*IEEE Reviews in Biomedical Engineering*## Pain Classification Papers
Year | Topic | Model | Signal | Dataset
------- | ------- | ------- | ------- | -------
2023 | [Objective Measurement of Subjective Pain Perception with Autonomic Body Reactions in Healthy Subjects and Chronic Back Pain Patients: An Experimental Heat Pain Study](https://www.mdpi.com/1424-8220/23/19/8231)
*sensors*| RF | BCP, ECG, EDA, EMG, Resp | ChronPain, PainMonit |
2023 | [Explainable Artificial Intelligence (XAI) in Pain Research: Understanding the Role of Electrodermal Activity for Automated Pain Recognition](https://www.mdpi.com/1424-8220/23/4/1959)
*sensors*| RF, MLP, CNN, CAE, CL, Transformer | EDA | BioVid, PainMonit |
2023 | [Transformer Encoder with Multiscale Deep Learning for Pain Classification Using Physiological Signals](https://arxiv.org/abs/2303.06845)
*arxiv* | Transformer Encoder+Temporal Conv+SEResNet;
Code: [github](https://github.com/zhenyuanlu/PainAttnNet) | EDA | BioVid |
2022 | [Personalized Deep Bi-LSTM RNN Based Model for Pain Intensity Classification Using EDA Signal](https://www.mdpi.com/1424-8220/22/21/8087)
*sensors* | BiLSTM + XGBoost | EDA | Proprietary Dataset: Cold Pain Data |
2022 | [Tree-Based Models for Pain Detection from Biomedical Signals](https://link.springer.com/chapter/10.1007/978-3-031-09593-1_14)
*ICOST 2022* | AdaBoost, XGBoost, TabNet, Random Forest (RF) | EDA,ECG | BioVid |
2021 | [Classification of Heat-Induced Pain Using Physiological Signals](https://link.springer.com/chapter/10.1007/978-3-030-49666-1_19)
*ITIB 2021* | RF, MLP, CNN | BVP, ECG, EDA, EMG, Resp | Heat-pain data
2021 | [Multi-Modal Pain Intensity Assessment Based on Physiological Signals: A Deep Learning Perspective](https://www.frontiersin.org/articles/10.3389/fphys.2021.720464/full)
*Frontiers in Physiology* | Self-supervised Learning, Auto-Encoder | EMG + ECG + EDA | BioVid; SenseEmotion |
2021 | [Automated Nociceptive Pain Assessment Using Physiological Signals and a Hybrid Deep Learning Network](https://ieeexplore.ieee.org/document/9194710)
*IEEE Sensors Journal* | CNN + LSTM | EDA, ECG |BioVid; Proprietary Dataset: Real-time Data |
2021 | [Comparison of Feature Extraction Methods for Physiological Signals for Heat-Based Pain Recognition](https://www.mdpi.com/1424-8220/21/14/4838)
*sensors*| RF, MLP, CNN, LSTM, CAE | EDA | BioVid, PainMonit|
2021 | [Pain Recognition With Electrocardiographic Features in Postoperative Patients: Method Validation Study](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196363/)
*JMIR*| ADABoost, XGBoost, random forest, SVM, KNN |ECG |BioVid as baseline; UCI_iHurtDB |
2021 | [Exploration of physiological sensors, features, and machine learning models for pain intensity estimation](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254108)
*PLOS ONE* | SVM | EDA | BioVid |
2021 | [Objective Pain Assessment Using Wrist-based PPG Signals: A Respiratory Rate Based Method](https://ieeexplore.ieee.org/abstract/document/9630002)
*EMBC* | ADABoost, XGBoost, random forest, SVM, KNN |PPG | UCI_iHurtDB |
2021 | [Machine learning suggests sleep as a core factor in chronic pain](https://journals.lww.com/pain/fulltext/2021/01000/machine_learning_suggests_sleep_as_a_core_factor.10.aspx?casa_token=rhg7opmfjzoAAAAA:kS04Z1pUWEpjuhkEDKcBstA31CrxlXLLIbcyzmTRduH4r_lN6NFCFuFzGOkuuW6Xasgvib1xOFWqPii7khZDlw)
*Pain* | CART, PART, RF | Mul-Sources Parametes | Proprietary Dataset: chronic pain, Finland|
2021 | [Assessment of thoracic pain using machine learning: a case study from Baja California, Mexico](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926745/)
*Environmental Research and Public Health* | Tree classification, RF, SVM, Logistic regression, kNN | AMI and FRCV Six Factors| Proprietary Dataset: Thoracic Pain |
2021 | [Prediction of breakthrough pain during labour neuraxial analgesia: comparison of machine learning and multivariable regression approaches](https://www.sciencedirect.com/science/article/abs/pii/S0959289X20301151?casa_token=jXEcGgvqyE8AAAAA:5XiqzTZmAbo9OiHdEB4jI75HTYoaDZIwt0DCCiX4jygCaN1NwLLkB4ff7BDI_7MlvNkHGIk323c)
*Obstetric Anesthesia* | RF, XGBoost, Logistic Regression | Medical Record | Proprietary Dataset: breakthrough pain during labour, Singapore|
2020 | [Hybrid RNN-ANN Based Deep Physiological Network for Pain Recognition](https://ieeexplore.ieee.org/abstract/document/9175247)
*EMBC 2020* | BiLSTM | EDA, ECG, EMG | BioVid |
2020 | [Pain phenotypes classified by machine learning using electroencephalography features](https://www.sciencedirect.com/science/article/pii/S1053811920307424)
*NeuroImage* | SVM | EEG, VAS | Proprietary Dataset: Chronic lumbar pain |
2020 | [Machine-learning-based knowledge discovery in rheumatoid arthritis-related registry data to identify predictors of persistent pain](https://journals.lww.com/pain/fulltext/2020/01000/machine_learning_based_knowledge_discovery_in.13.aspx?casa_token=EwPFUNHkjFYAAAAA:j21Y3hnnx7ajXLCmkzGtcKpJe6gtAyFvST30vjN3QIArI0n4k-MDzce_hP1YdOuVqBlEBGI2gFnSRyLUMBvbuw)
*Pain* | CART, kNN, MLP, SVM, Naive Bayes | Multi-sources Parameters | Proprietary Dataset: Rheumatoid arthritis |
2020 | [Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG](https://doi.org/10.1016/j.neucom.2019.10.023)
*Neurocomputing* | CNN | EEG | Proprietary Dataset: Cold Pain Data |
2020 | [Using a motion sensor to categorize nonspecific low back pain patients: a machine learning approach](https://scholar.google.com/scholar_lookup?title=Using%20a%20motion%20sensor%20to%20categorize%20nonspecific%20low%20back%20pain%20patients%3A%20a%20machine%20learning%20approach&journal=Sensors&doi=10.3390%2Fs20123600&volume=20&issue=12&publication_year=2020&author=Abdollahi%2CM&author=Ashouri%2CS&author=Abedi%2CM)
*sensors* | SVM, MLP |Trunk kinematic data | Propritary Dataset: Nonspecific low back pain |
2020 | [Identifying predictive factors for neuropathic pain after breast cancer surgery using machine learning](https://www.sciencedirect.com/science/article/pii/S1386505619311554)
*International Journal of Medical Informatics* | RF, Linear Regression, Elastic Net, Ridge Regression, Gradient Boosting, Neural Net | Questionnaires before and after surgery | [Prospective Cohort Study](https://www.sciencedirect.com/topics/nursing-and-health-professions/prospective-cohort-study), Neuropathic pain|
2020 | [Interpretable machine learning models for classifying low back pain status using functional physiological variables](https://link.springer.com/article/10.1007/s00586-020-06356-0)
*European Spine Journal* |Functional Data Boosting (FDboost) | EMG | Proprietary Dataset: Low Back Pain |
2020 | [Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG](https://doi.org/10.1016/j.neucom.2019.10.023)
*Neurocomputing* | CNN | EEG | Proprietary Dataset: Cold Pain Data |
2020 | [Medical expert system for low back pain management: design issues and conflict resolution with Bayesian network](https://link.springer.com/article/10.1007/s11517-020-02222-9)
*Medical & Biological Engineering & Computing* | Bayes | Clinical Records | Proprietary Dataset: Low back pain|
2019 | [Feature extraction and selection for pain recognition using peripheral physiological signals](https://www.frontiersin.org/articles/10.3389/fnins.2019.00437/full)
*Frontiers in Neuroscience* | SVM | EMG, SCL, ECG | BioVid |
2019 | [Predicting inadequate postoperative pain management in depressed patients: a machine learning approach](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210575)
*Plos ONE* | Elastic Net, NLP (NegEx) | 65 predictive features from EHR | Proprietary Dataset: EHR |
2019 | [Exploring Deep Physiological Models for Nociceptive Pain Recognition](https://www.mdpi.com/1424-8220/19/20/4503)
*sensors* | CNN | EDA, ECG | BioVid |
2019 | [A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal](https://www.mdpi.com/1424-8220/19/2/384)
*sensors* | Deep Belief Network, MLP, SVM | PPG | Proprietary Dataset: Pre-/Post-operation of Surgery |
2019 | [Acute pain intensity monitoring with the classification of multiple physiological parameters](https://link.springer.com/article/10.1007/s10877-018-0174-8)
*Journal of Clinical Monitoring and Computing* | MLP | HR, BR, GSR, EMG | Proprietary Dataset: Heat and Electrical Stimuli |
2019 | [Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377310/)
*Pain* | SVM | Neuroimages | Proprietary Dataset: Chronic Low Back Pain |
2019 | [Exploring Deep Physiological Models for Nociceptive Pain Recognition](https://www.mdpi.com/1424-8220/19/20/4503)
*sensors* | CNN | EDA, ECG | BioVid |
2019 | [Acute pain intensity monitoring with the classification of multiple physiological parameters](https://link.springer.com/article/10.1007/s10877-018-0174-8)
*Journal of Clinical Monitoring and Computing* | MLP | HR, Breath Rate, GSR, EMG | Proprietary Dataset, HR, BR, GSR, Facial |
2019 | [A joint deep neural network model for pain recognition from face](https://ieeexplore.ieee.org/abstract/document/8821779)
*ICCCS 2019* | RNN+VGGFace CNN | Facial Images | UNBC-McMaster Shoulder Pain |
2018 | [Deep Multimodal Pain Recognition: A Database and Comparison of Spatio-Temporal Visual Modalities](https://ieeexplore.ieee.org/document/8373837)
*FG 2018* | CNN+LSTM | RGBDT (RGB, Depth, Thermal) | Multimodal Intensity Pain (MIntPAIN) |
2018 | [Continuous Pain Intensity Estimation from Autonomic Signals with Recurrent Neural Networks](https://ieeexplore.ieee.org/abstract/document/8513575?casa_token=6heJe82tPUYAAAAA:wrd62Nde2jJ6nS_i-KEfpF5lI7fqLinKc4At1SgZRM-xAHV1r6Adc5I5B_eSjAHg8lHj09DLsz8)
*EMBCC 2018* | LSTM-NN| EDA, HR | BioVid
2018 | [Deep learning model for detection of pain intensity from facial expression](https://link.springer.com/chapter/10.1007/978-3-319-94523-1_22)
*ICOST 2018*| BiLSTM-CNN-VSL-CRF | Facial Expressions | - |
2018 | [Improving pain management in patients with sickle cell disease from physiological measures using machine learning techniques](https://www.sciencedirect.com/science/article/pii/S2352648317300727?casa_token=eOG5Q_GEbIUAAAAA:JrDR3_nnZzl_AkB9c6x1-kzsPmEjBlWRRSixh3FoKDrBfnwnbBIjfWg1HMhMonNdrE4Mrp_zzkc)
*Smart Health* | RF, kNN, SVM, Multinomial logistic regression | Peripheral capillary oxygen saturation, systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, temperature | Proprietary Dataset: SCD patients, Duke Hospital|
2017 | [Prediction effects of personal, psychosocial, and occupational risk factors on low back pain severity using artificial neural networks approach in industrial workers](https://www.sciencedirect.com/science/article/pii/S0161475416301440?casa_token=ehnZMh2tcWEAAAAA:5eBmlLVs2CtHNNhUW6x07RDeQNiHsX6IoWT4TEp8NTbKkKQDfdQZCOPPx-FsxT4YyF0pjyZaZi8)
*Manipulative and Physiological Therapeutics* | MLP, kNN, Logistic Regression | BVP, ECG, SCL | Proprietary Dataset: Low back pain|
2017 | [Multi-task neural networks for personalized pain recognition from physiological signals](https://ieeexplore.ieee.org/abstract/document/8272611)
*ACIIW 2017* | MLP | EDA, ECG | BioVid |
2017 | [Physiological Signal-Based Method for Measurement of Pain Intensity](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445136/)
*Front Neurosci.* | KNN, SVM, LDA | BVP, ECG, SCL | Proprietary Dataset: Electrical stimulation |
2017 | [Multi-task neural networks for personalized pain recognition from physiological signals](https://ieeexplore.ieee.org/abstract/document/8272611)
*ACIIW 2017* | MLP | EDA, ECG | BioVid |
2015 | [Multimodal Data Fusion for Person-Independent, Continuous Estimation of Pain Intensity](https://link.springer.com/chapter/10.1007/978-3-319-23983-5_26)
*EANN 2015* | Random Forest | EDA, ECG, EMG, Videos | BioVid |
2014 | [Automatic Pain Recognition from Video and Biomedical Signals](https://ieeexplore.ieee.org/abstract/document/6977497)
*International Conference on Pattern Recognition* | Random Forest | EDA, ECG, EMG, Videos | BioVid |## Datasets Mentioned Above
Year | Name | Dataset
------------ | ------------- | ------------
2005 | Infant database: COPE/iCOPE | http://www.brahnam.info/papers/EN2031.pdf
2011 | UNBC-McMaster Shoulder Pain | http://www.jeffcohn.net/Resources/
2013 | BioVid Heat Pain Database| https://www.nit.ovgu.de/BioVid.html
2016 | PPG Signals | http://cris.nih.go.kr Registration Number: KCT0002080 https://cris.nih.go.kr/cris/search/detailSearch.do/6638
2017 | SenseEmotion | -
2018 | Multimodal Intensity Pain (MIntPAIN) | https://vap.aau.dk/mintpain-database/## Other Public Pain Databases Collection
[List of Publicly Available Pain Recognition Databases](https://github.com/philippwerner/pain-database-list) Collected by Philipp Werner.
## License
This work is licensed under a
[Creative Commons Attribution-ShareAlike 4.0 International License][cc-by-sa].[![CC BY-SA 4.0][cc-by-sa-image]][cc-by-sa]
[cc-by-sa]: http://creativecommons.org/licenses/by-sa/4.0/
[cc-by-sa-image]: https://licensebuttons.net/l/by-sa/4.0/88x31.png