Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
machine-learning-with-ruby
Curated list: Resources for machine learning in Ruby
https://github.com/arbox/machine-learning-with-ruby
Last synced: 5 days ago
JSON representation
-
Community
-
Vector search
- Stack Overflow
- SciRuby Mailing List
- SciRuby Slack
- Red Data Gitter
- Stack Overflow
- NonWebRuby
- Ruby AI Builders Discord
- Mastodon Ruby AI and Data group
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Mastodon Ruby AI and Data group
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
- Stack Overflow
-
-
Machine Learning Libraries
-
Statistical models
-
Vector search
-
Frameworks
-
Neural networks
-
Deep learning
- torch-rb - Ruby bindings for [LibTorch](https://github.com/pytorch/pytorch)
-
Kernel methods
-
Evolutionary algorithms
-
-
Articles, Posts, Talks, and Presentations
-
Vector search
- [video
- [video
- Justin Bowen
- Joseph Emmanuel Dayo
- [post
- @kojix
- [post
- Kenta Murata
- [slides
- page
- Denis Sellu
- [post
- Prasun Anand
- [slides
- video
- slides
- slides
- Matthew Mongeau
- [video
- slides
- Richard Schneeman
- [video
- slides
- RubyThursday
- [video
- Jordan Hudgens
- [tutorial
- Geoffrey Litt
- [slides
- Kei Sawada
- [slides
- Eric Weinstein
- [slides
- video
- Brian Sam-Bodden
- [video
- [slides
- video: jp
- [video
- Lorenzo Masini
- [post
- Rick Carlino
- [tutorial
- [video
- Benjamin Curtis
- [video
- slides
- John Paul Ashenfelter
- [video
- [video
- Marcel Caraciolo
- [slides
- [post
- Vasily Vasinov
- [tutorial
- Joseph Wilk
- [post
- Andrew Cantino
- Ryan Stout
- [video
- Colin Drake
- [post
- Rimas Silkaitis
- [post
- Mike Perham
- [post
- Ilya Grigorik
- [video
- [post
- [post
- Yusaku Hatanaka
-
-
:sparkles: Tutorials
- Ruby neural networks
- How to implement linear regression in Ruby
- How to implement classification using logistic regression in Ruby
- How to implement simple binary classification using a Neural Network in Ruby
- How to implement classification using a SVM in Ruby
- Unsupervised learning using k-means clustering in Ruby
- Teaching an AI to play a simple game using Q-Learning in Ruby
- Teaching a Neural Network to play a game using Q-Learning in Ruby
- [code
- Using the Python scikit-learn machine learning library in Ruby using PyCall
- How to _evolve_ neural networks in Ruby using the Machine Learning Workbench
- [code
- [code
- [code
- [code
- [code
- [code
-
Books, Blogs, Channels
-
Vector search
-
-
Related Resources
Categories
Sub Categories
Keywords
rubyml
9
ruby
7
machine-learning
3
classification
2
gbm
2
svm-classifier
2
python
2
ml
2
jruby
1
clustering
1
scikit-learn
1
handwritten-digit-recognition
1
reinforcement-learning
1
q-learning
1
ai
1
unsupervised-learning
1
kmeans-clustering
1
svm
1
ruby-libraries
1
curated-list
1
collection
1
awesome-list
1
r
1
parallel
1
microsoft
1
lightgbm
1
kaggle
1
gradient-boosting
1
gbrt
1
gbdt
1
distributed
1
decision-trees
1
data-mining
1
ruby-gem
1
random-forest
1
pmml
1
naive-bayes
1
gradient-boosting-classifier
1
gradient-boosted-models
1
decision-tree
1
bayesian-classifier
1
weka
1
awesome
1