Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
CUDA-Guide
CUDA Guide
https://github.com/mikeroyal/CUDA-Guide
Last synced: 20 minutes ago
JSON representation
-
CUDA Learning Resources
- CUDA - accelerated applications, the sequential part of the workload runs on the CPU, which is optimized for single-threaded. The compute intensive portion of the application runs on thousands of GPU cores in parallel. When using CUDA, developers can program in popular languages such as C, C++, Fortran, Python and MATLAB.
- CUDA Toolkit Documentation
- CUDA Quick Start Guide
- CUDA on WSL
- CUDA GPU support for TensorFlow
- NVIDIA Deep Learning cuDNN Documentation
- NVIDIA GPU Cloud Documentation
- NVIDIA NGC - optimized software for deep learning, machine learning, and high-performance computing (HPC) workloads.
- NVIDIA NGC Containers - accelerated software for AI, machine learning and HPC. These containers take full advantage of NVIDIA GPUs on-premises and in the cloud.
- CUDA GPU support for TensorFlow
- NVIDIA NGC Containers - accelerated software for AI, machine learning and HPC. These containers take full advantage of NVIDIA GPUs on-premises and in the cloud.
-
CUDA Tools
- CUDA Toolkit - accelerated applications. The CUDA Toolkit allows you can develop, optimize, and deploy your applications on GPU-accelerated embedded systems, desktop workstations, enterprise data centers, cloud-based platforms and HPC supercomputers. The toolkit includes GPU-accelerated libraries, debugging and optimization tools, a C/C++ compiler, and a runtime library to build and deploy your application on major architectures including x86, Arm and POWER.
- NVIDIA cuDNN - accelerated library of primitives for [deep neural networks](https://developer.nvidia.com/deep-learning). cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers. cuDNN accelerates widely used deep learning frameworks, including [Caffe2](https://caffe2.ai/), [Chainer](https://chainer.org/), [Keras](https://keras.io/), [MATLAB](https://www.mathworks.com/solutions/deep-learning.html), [MxNet](https://mxnet.incubator.apache.org/), [PyTorch](https://pytorch.org/), and [TensorFlow](https://www.tensorflow.org/).
- CUDA-X HPC - X HPC includes highly tuned kernels essential for high-performance computing (HPC).
- Minkowski Engine - differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unpooling, and broadcasting operations for sparse tensors.
- Chainer - based deep learning framework aiming at flexibility. It provides automatic differentiation APIs based on the define-by-run approach (dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks. It also supports CUDA/cuDNN using [CuPy](https://github.com/cupy/cupy) for high performance training and inference.
- CuPy - compatible multi-dimensional array on CUDA. CuPy consists of the core multi-dimensional array class, cupy.ndarray, and many functions on it. It supports a subset of numpy.ndarray interface.
- CatBoost
- cuDF - like API that will be familiar to data engineers & data scientists, so they can use it to easily accelerate their workflows without going into the details of CUDA programming.
- ArrayFire - purpose library that simplifies the process of developing software that targets parallel and massively-parallel architectures including CPUs, GPUs, and other hardware acceleration devices.
- AresDB - powered real-time analytics storage and query engine. It features low query latency, high data freshness and highly efficient in-memory and on disk storage management.
- GraphVite - speed and large-scale embedding learning in various applications.
- NVIDIA Container Toolkit - container) and utilities to automatically configure containers to leverage NVIDIA GPUs.
- Minkowski Engine - differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unpooling, and broadcasting operations for sparse tensors.
- CUTLASS - performance matrix-multiplication (GEMM) at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS.
- CUB
- Tensorman
- Numba - aware optimizing compiler for Python sponsored by Anaconda, Inc. It uses the LLVM compiler project to generate machine code from Python syntax. Numba can compile a large subset of numerically-focused Python, including many NumPy functions. Additionally, Numba has support for automatic parallelization of loops, generation of GPU-accelerated code, and creation of ufuncs and C callbacks.
- cuML - learn.
- Arraymancer - dimensional array) project in Nim. The main focus is providing a fast and ergonomic CPU, Cuda and OpenCL ndarray library on which to build a scientific computing ecosystem.
- Kintinuous - time dense visual SLAM system capable of producing high quality globally consistent point and mesh reconstructions over hundreds of metres in real-time with only a low-cost commodity RGB-D sensor.
- Thrust - level interface greatly enhances programmer productivity while enabling performance portability between GPUs and multicore CPUs.
-
C/C++ Learning Resources
- C++ - platform language that can be used to build high-performance applications developed by Bjarne Stroustrup, as an extension to the C language.
- C - purpose, high-level language that was originally developed by Dennis M. Ritchie to develop the UNIX operating system at Bell Labs. It supports structured programming, lexical variable scope, and recursion, with a static type system. C also provides constructs that map efficiently to typical machine instructions, which makes it one was of the most widely used programming languages today.
- Embedded C - committee) to address issues that exist between C extensions for different [embedded systems](https://en.wikipedia.org/wiki/Embedded_system). The extensions hep enhance microprocessor features such as fixed-point arithmetic, multiple distinct memory banks, and basic I/O operations. This makes Embedded C the most popular embedded software language in the world.
- C & C++ Developer Tools from JetBrains
- Open source C++ libraries on cppreference.com
- C++ Graphics libraries
- C++ Libraries in MATLAB
- C++ Tools and Libraries Articles
- Google C++ Style Guide
- Introduction C++ Education course on Google Developers
- C++ style guide for Fuchsia
- C and C++ Coding Style Guide by OpenTitan
- Chromium C++ Style Guide
- C++ Core Guidelines
- C++ Style Guide for ROS
- Learn C++
- Learn C : An Interactive C Tutorial
- C++ Institute
- C++ Online Training Courses on LinkedIn Learning
- C++ Tutorials on W3Schools
- Learn C Programming Online Courses on edX
- Learn C++ with Online Courses on edX
- Learn C++ on Codecademy
- Coding for Everyone: C and C++ course on Coursera
- C++ For C Programmers on Coursera
- Top C Courses on Coursera
- C++ Online Courses on Udemy
- Top C Courses on Udemy
- Basics of Embedded C Programming for Beginners on Udemy
- C++ For Programmers Course on Udacity
- C++ Fundamentals Course on Pluralsight
- Introduction to C++ on MIT Free Online Course Materials
- Introduction to C++ for Programmers | Harvard
- Online C Courses | Harvard University
-
C/C++ Tools
- AWS SDK for C++
- Visual Studio - rich application that can be used for many aspects of software development. Visual Studio makes it easy to edit, debug, build, and publish your app. By using Microsoft software development platforms such as Windows API, Windows Forms, Windows Presentation Foundation, and Windows Store.
- Visual Studio Code
- ReSharper C++
- AppCode - fixes to resolve them automatically. AppCode provides lots of code inspections for Objective-C, Swift, C/C++, and a number of code inspections for other supported languages. All code inspections are run on the fly.
- CLion - platform IDE for C and C++ developers developed by JetBrains.
- Code::Blocks
- Conan
- High Performance Computing (HPC) SDK
- Boost - edge C++. Boost has been a participant in the annual Google Summer of Code since 2007, in which students develop their skills by working on Boost Library development.
- Automake
- Cmake - source, cross-platform family of tools designed to build, test and package software. CMake is used to control the software compilation process using simple platform and compiler independent configuration files, and generate native makefiles and workspaces that can be used in the compiler environment of your choice.
- GDB
- GCC - C, Fortran, Ada, Go, and D, as well as libraries for these languages.
- GSL - squares fitting. There are over 1000 functions in total with an extensive test suite.
- OpenGL Extension Wrangler Library (GLEW) - platform open-source C/C++ extension loading library. GLEW provides efficient run-time mechanisms for determining which OpenGL extensions are supported on the target platform.
- Libtool
- Maven
- TAU (Tuning And Analysis Utilities) - based sampling. All C++ language features are supported including templates and namespaces.
- Clang - C, C++ and Objective-C++ compiler when targeting X86-32, X86-64, and ARM (other targets may have caveats, but are usually easy to fix). Clang is used in production to build performance-critical software like Google Chrome or Firefox.
- OpenCV - time applications. Cross-Platform C++, Python and Java interfaces support Linux, MacOS, Windows, iOS, and Android.
- Libcu++
- ANTLR (ANother Tool for Language Recognition)
- Oat++ - efficient web application. It's zero-dependency and easy-portable.
- Cython
- Infer - C, and C. Infer is written in [OCaml](https://ocaml.org/).
- Azure SDK for C++
- Azure SDK for C
- C++ Client Libraries for Google Cloud Services
- Vcpkg
- CppSharp
- JavaCPP
- Spdlog - only/compiled, C++ logging library.
-
Python Learning Resources
- Python - level programming language. Python is used heavily in the fields of Data Science and Machine Learning.
- Python Developer’s Guide
- Azure Functions Python developer guide - us/azure/azure-functions/functions-reference).
- CheckiO
- Python Institute
- MTA: Introduction to Programming Using Python Certification
- Getting Started with Python in Visual Studio Code
- Google's Python Style Guide
- Google's Python Education Class
- Real Python
- Intro to Python for Data Science
- Intro to Python by W3schools
- Codecademy's Python 3 course
- Learn Python with Online Courses and Classes from edX
- Python Courses Online from Coursera
- The Python Open Source Computer Science Degree by Forrest Knight
- PCPP – Certified Professional in Python Programming 2
- Python - level programming language. Python is used heavily in the fields of Data Science and Machine Learning.
- PCEP – Certified Entry-Level Python Programmer certification
- PCAP – Certified Associate in Python Programming certification
-
Python Frameworks and Tools
- Web2py - source web application framework written in Python allowing allows web developers to program dynamic web content. One web2py instance can run multiple web sites using different databases.
- Python Package Index (PyPI)
- PyCharm
- Django - level Python Web framework that encourages rapid development and clean, pragmatic design.
- Flask
- Tornado - blocking network I/O, which can scale to tens of thousands of open connections.
- HTTPie
- Scrapy - level web crawling and web scraping framework, used to crawl websites and extract structured data from their pages. It can be used for a wide range of purposes, from data mining to monitoring and automated testing.
- Sentry
- CherryPy - oriented HTTP web framework.
- Sanic
- Pyramid - world web application development and deployment more fun and more productive.
- TurboGears
- Falcon - performance Python web framework for building large-scale app backends and microservices with support for MongoDB, Pluggable Applications and autogenerated Admin.
- Dash
- NumPy
- Pillow
- IPython
- GraphLab Create - scale, high-performance machine learning models.
- Pandas
- Matplotlib - quality figures in a variety of hardcopy formats and interactive environments across platforms.
- Scikit-Learn
- Pylance
- Pyright
- AWS Chalice
- Pipenv
- Python Fire
- Bottle - framework for Python. It is distributed as a single file module and has no dependencies other than the [Python Standard Library](https://docs.python.org/library/).
- Sanic
- Neural Network Intelligence(NNI)
- Luigi - in.
- Locust
- spaCy
- PuLP
- Python Tools for Visual Studio(PTVS)
Categories
Sub Categories
Keywords
python
13
cuda
9
cpp
8
gpu
5
deep-learning
5
nvidia
4
machine-learning
4
cpp14
3
cpp11
3
cxx14
3
c
3
neural-network
3
neural-networks
2
iot
2
cpp17
2
web-framework
2
cpp20
2
gpu-computing
2
cxx
2
cxx11
2
azure
2
cxx17
2
cxx20
2
nvidia-hpc-sdk
2
azure-sdk
2
cloud
2
data-science
2
machine-learning-algorithms
2
visual-studio
2
cplusplus
2
pytorch
2
algorithms
2
nim
1
c-sharp
1
opencl
1
openmp
1
parallel-computing
1
tensor
1
bridge
1
reconstruction
1
bindings
1
windows
1
slam
1
vcpkg
1
packages
1
package-manager
1
libraries
1
google-cloud
1
azure-services
1
embedded
1