Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
Awesome-TimeSeries-SpatioTemporal-LM-LLM
A professional list on Large (Language) Models and Foundation Models (LLM, LM, FM) for Time Series, Spatiotemporal, and Event Data.
https://github.com/qingsongedu/Awesome-TimeSeries-SpatioTemporal-LM-LLM
Last synced: about 19 hours ago
JSON representation
-
LLMs for Time Series
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\ - DI-ML/NeurIPS2023-One-Fits-All)
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\ - code\]](https://github.com/ant-research/fin_domain_llm)
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\ - code\]](https://github.com/iLampard/ep_llm)
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\ - LLM)
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
-
PFMs for Spatio-Temporal Graphs
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
-
Related Resources
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\ - series-transformers-review)
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\ - lab/time-series-ptms)
- \[paper\ - SSL4TS)
- \[paper\ - GNN4TS)
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[paper\
-
LLMs for Video Data
-
Survey paper
-
PFMs for Time Series
-
LLMs for Spatio-Temporal Graphs
-
PFMs for Video Data
- \[paper\
- \[paper\
- \[paper\
- \[paper\
- \[link\
- \link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[link\
- \[paper\
- \[paper\
- \[link\
-
Related LLM/LM/FM Resources
Programming Languages
Categories
Sub Categories
Keywords
dataset
5
large-language-models
3
time-series
2
cvpr2017
1
snuvl
1
tgif-qa
1
benchmarking
1
machine-learning-algorithms
1
stochastic-processes
1
temporal-data
1
electricity-transformer-dataset
1
forecasting
1
long-sequence
1
change-point
1
change-point-detection
1
data-mining
1
data-science
1
machine-learning
1
annotations
1
cvpr
1
cvpr2021
1
multimodal
1
multimodal-deep-learning
1
paper
1
traffic-events
1
video-qa
1
video-reasoning
1
vqa
1
vqa-dataset
1
benchmark
1
deep-learning
1
weather-forecast
1
prices
1
stock-prediction
1
multimodal-models
1
transformer-models
1
vision-transformer
1
chain-of-thought
1
in-context-learning
1
instruction-following
1
instruction-tuning
1
large-vision-language-model
1
large-vision-language-models
1
multi-modality
1
multimodal-chain-of-thought
1
multimodal-in-context-learning
1
multimodal-instruction-tuning
1
multimodal-large-language-models
1
visual-chain-of-thought
1
visual-in-context-learning
1