Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/FCP-INDI/awesoMRI-QC

A curated list of measures, tools, and references for MRI quality control (QC).
https://github.com/FCP-INDI/awesoMRI-QC

List: awesoMRI-QC

awesome-list mri-analysis neuroimaging quality-control

Last synced: 16 days ago
JSON representation

A curated list of measures, tools, and references for MRI quality control (QC).

Awesome Lists containing this project

README

        

# Awesome MRI QC

A curated list of tools, measures, and references for MRI quality
control (QC).

> Quality Control (QC) refers to “a real-time prospective process to
> ensure imaging quality is maintained by comparing it regularly to a
> defined set of criteria or industry standards” ([Sreedher et al.,
> 2021](#ref-Sreedher2021)) via ([Das et al., 2022](#ref-Das2022)).

Inspired by [awesome-python](https://github.com/vinta/awesome-python)
and other [awesome lists](https://github.com/sindresorhus/awesome).

- [Tools](#tools)
- [QC metric and report generation](#qc-metric-and-report-generation)
- [MRI analysis packages with built-in
QC](#mri-analysis-packages-with-built-in-qc)
- [QC at scale](#qc-at-scale)
- [QC web platforms](#qc-web-platforms)
- [Automated QC with machine
learning](#automated-qc-with-machine-learning)
- [General-purpose image quality
estimation](#general-purpose-image-quality-estimation)
- [Measures](#measures)
- [Structural T1](#structural-t1)
- [Image quality](#image-quality)
- [Tissue segmentation](#tissue-segmentation)
- [Brain extraction](#brain-extraction)
- [Spatial normalization](#spatial-normalization)
- [Surface reconstruction](#surface-reconstruction)
- [Cortical/subcortical
segmentation](#corticalsubcortical-segmentation)
- [Functional BOLD](#functional-bold)
- [Image quality](#image-quality-1)
- [Motion correction](#motion-correction)
- [Co-registration](#co-registration)
- [Functional connectivity](#functional-connectivity)
- [Diffusion weighted imaging (DWI)](#diffusion-weighted-imaging-dwi)
- [Image quality](#image-quality-2)
- [Fiber orientation modeling](#fiber-orientation-modeling)
- [Tractography](#tractography)
- [Structural connectivity](#structural-connectivity)
- [References](#references)

## Tools

### QC metric and report generation

- [MRIQC](https://mriqc.readthedocs.io/): extracts no-reference image
quality metrics from structural and functional MRI data.
- [QAP](http://preprocessed-connectomes-project.org/quality-assessment-protocol/):
The QAP package allows you to obtain spatial and anatomical data
quality measures for your own data. (Precursor to MRIQC.)
- [fBIRN QA tools](https://www.nitrc.org/projects/bxh_xcede_tools):
These tools form the basis of the fBIRN QA procedures ([Glover et al.,
2012](#ref-Glover2012)).
- [MRQy](https://github.com/ccipd/MRQy): A quality assurance and
checking tool for quantitative assessment of MRI data

### MRI analysis packages with built-in QC

- [AFNI](https://afni.nimh.nih.gov/): A suite of programs for looking at
and analyzing MRI brain images at all stages of analysis.
- [`3dToutcount`](https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dToutcount.html):
Calculates number of “outliers” a 3D+time dataset, at each time
point.
- [`3dTqual`](https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTqual.html):
Computes a “quality index” for each sub-brick in a 3D+time dataset.
- [FSL](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki): A comprehensive library
of analysis tools for FMRI, MRI and DTI brain imaging data.
- [EDDY QC
tools](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddyqc/UsersGuide#The_EDDY_QC_tools)
: Generates single-subject and group QC reports for diffusion MRI.
- [FEAT
report](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide): HTML
report for single-subject and group fMRI analysis.
- [`fsl_motion_outliers`](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers):
command-line tool for analyzing single-subject motion.
- [NiPype](https://nipype.readthedocs.io/): Provides a uniform interface
to existing neuroimaging software and facilitates interaction between
these packages within a single workflow
- [C-PAC](https://fcp-indi.github.io/docs/latest/user/index): A
configurable, open-source, Nipype-based, automated processing pipeline
for resting state functional MRI data
- [C-PAC
QC](https://fcp-indi.github.io/docs/latest/user/pipelines/quality.html):
QC metrics and reports extending
[XCP](https://xcpengine.readthedocs.io/index.html).
- [XCP](https://xcpengine.readthedocs.io/index.html): A free,
open-source software package for processing of multimodal neuroimages
with extensive QC metrics for T1w and BOLD MRI images.
- [DPABI](http://rfmri.org/dpabi): A toolbox for Data Processing &
Analysis for Brain Imaging including GUI-based QC reports.
- [DSI Studio](https://dsi-studio.labsolver.org/): A tractography
software tool that maps brain connections and correlates findings with
neuropsychological disorders. Includes automated QC metrics.
- [QSIprep](https://qsiprep.readthedocs.io/): Configures pipelines for
processing diffusion-weighted MRI (dMRI) data. Includes QC metrics
from [DSI Studio](https://dsi-studio.labsolver.org/).

### QC at scale

- [NiRV](https://github.com/ni-report-viewer/nirv): A modern
neuroimaging report viewer that aggregates participant level HTML
reports for datasets, small and large.
- [NiReports](https://github.com/nipreps/nireports): The NiPreps’
Reporting and Visualization system - report templates and “reportlets”
- [SQAN](https://github.com/IUSCA/SQAN): Scalable Quality Assurance for
Neuroimaging. A full-stack system for extracting, translating,
logging, and visualizing DICOM-formatted medical imaging data.

### QC web platforms

- [MIQA](https://miqa.kitware.com/): Efficient and accurate QC
processing by leveraging modern UI/UX and deep learning techniques
- [MindControl](https://github.com/akeshavan/mindcontrol): An app for
quality control of neuroimaging pipeline outputs, especially
anatomical segmentations
- [Braindr](https://github.com/OpenNeuroLab/braindr): a firebase app for
braindr: Tinder for brains
- [Fibr](https://fibr.dev): An app for quality control of diffusion MRI
images from the Healthy Brain Network
- [dmriprep-viewer](http://www.nipreps.org/dmriprep-viewer): Web app to
visualize local QSIprep and dMRIprep outputs

### Automated QC with machine learning

- [Qoala-T](https://github.com/Qoala-T/QC): Qoala-T is a
supervised-learning tool for quality control of FreeSurfer segmented
MRI data
- [mriqc-learn](https://github.com/nipreps/mriqc-learn): Learning on
MRIQC-generated image quality metrics (IQMs)

### General-purpose image quality estimation

- [sewar](https://github.com/andrewekhalel/sewar): All image quality
metrics you need in one package.
- [MATLAB
IQMs](https://www.mathworks.com/help/images/image-quality-metrics.html):
Full and no-reference image quality metrics implemented in MATLAB.
- [awesome-image-quality-assessment](https://github.com/chaofengc/Awesome-Image-Quality-Assessment):
Awesome list of image quality tools and references.

## Measures

### Structural T1

#### Image quality

| Measure | Summary | Interpretation | References |
|----------------------------------------|------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|
| Coefficient of joint variation (CJV) | Larger values indicate head motion and INU artifacts | lower better | [MRIQC](https://mriqc.readthedocs.io/), ([Ganzetti et al., 2016](#ref-Ganzetti2016)) |
| Contrast-to-noise ratio (CNR) | Larger values indicate more GM to WM contrast | higher better | [MRIQC](https://mriqc.readthedocs.io/), ([Magnotta & Friedman, 2006](#ref-Magnotta2006)) |
| Signal-to-noise ratio (SNR) | SNR within brain mask | higher better | [MRIQC](https://mriqc.readthedocs.io/) |
| Dietrich SNR (SNRd) | SNR relative to air background | higher better | [MRIQC](https://mriqc.readthedocs.io/), ([Dietrich et al., 2007](#ref-Dietrich2007)) |
| Mortamet’s quality index 1 (QI1) | Proportion of “corrupted” voxels vs number of background voxels | lower better | [MRIQC](https://mriqc.readthedocs.io/), ([Mortamet et al., 2009](#ref-Mortamet2009)) |
| Mortamet’s quality index 2 (QI2) | Comparison of background noise with $\Chi^2$ distribution after correcting for QI1 | lower better | [MRIQC](https://mriqc.readthedocs.io/), ([Mortamet et al., 2009](#ref-Mortamet2009)) |
| EFC | Shannon entropy as indicator of ghosting due to head motion | lower better | [MRIQC](https://mriqc.readthedocs.io/), ([Atkinson et al., 1997](#ref-Atkinson1997)) |
| FBER | Ratio of “mean energy” within head vs air | higher better | [MRIQC](https://mriqc.readthedocs.io/), ([Shehzad et al., 2015](#ref-Shehzad2015)) |
| INU | Summary stats for INU bias field. Values close to 1 mean less bias. | higher better | [MRIQC](https://mriqc.readthedocs.io/), ([Tustison et al., 2010](#ref-Tustison2010)) |
| White matter to maximum ratio (WM2max) | Median WM intensity divided by 95 percentile intensity | values in `[0.6, 0.8]` are good. | [MRIQC](https://mriqc.readthedocs.io/) |
| FWHM | Estimation of image smoothness. Higher values mean blurry. | lower better | [MRIQC](https://mriqc.readthedocs.io/) |

#### Tissue segmentation

| Measure | Summary | Interpretation | References |
|--------------------------|----------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------|
| ICV | Intracranial volume fraction for each tissue type (WM, GM, CSF) | | [MRIQC](https://mriqc.readthedocs.io/) |
| rPVe | Residual partial voluming error for each tissue type | lower better | [MRIQC](https://mriqc.readthedocs.io/) |
| Tissue summary stats | Summary stats for signal within tissue masks (mean, stdev, p05, p95) | | [MRIQC](https://mriqc.readthedocs.io/) |
| Tissue prior overlap | Overlap of estimated tissue probability maps with template priors | higher better | [MRIQC](https://mriqc.readthedocs.io/) |
| Tissue skewness/kurtosis | Skewness and kurtosis of intensity distribution for WM, GM, and background | | [MRIQC](https://mriqc.readthedocs.io/), ([Rosen et al., 2018](#ref-Rosen2018)) |
| WM hypointensities | Voxel count of white matter hypointensities | lower better | [Freesurfer](https://surfer.nmr.mgh.harvard.edu/fswiki), ([Klapwijk et al., 2019](#ref-Klapwijk2019)) |

#### Brain extraction

| Measure | Summary | Interpretation | References |
|-----------------------|------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------|
| Boundary tissue count | Volume of each tissue type lying on brain mask boundary. Large WM values suggest brain extraction failure. | lower WM values better | ([Alfaro-Almagro et al., 2018](#ref-Alfaro-Almagro2018)) |

#### Spatial normalization

| Measure | Summary | Interpretation | References |
|-------------------------|--------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------|
| Normalization cost | Cost function between T1 and template under linear and nonlinear alignment | lower better | |
| Normalization magnitude | Amount of nonlinear warping | lower better | ([Alfaro-Almagro et al., 2018](#ref-Alfaro-Almagro2018)) |
| Normalized overlap | Dice or Jaccard overlap coefficient between resampled T1 and template for brain and tissue masks | higher better | [XCP](https://xcpengine.readthedocs.io/index.html), ([Alfaro-Almagro et al., 2018](#ref-Alfaro-Almagro2018)) |

#### Surface reconstruction

| Measure | Summary | Interpretation | References |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Euler number | `2 - 2g` where `g` is the number of topological holes in the surface. Computed by the [Euler–Lhulier formula](https://www.quantamagazine.org/topology-101-how-mathematicians-study-holes-20210126/) (`V - E + F`) | higher better | ([Rosen et al., 2018](#ref-Rosen2018)), ([Dale et al., 1999](#ref-Dale1999)), [Freesurfer](https://surfer.nmr.mgh.harvard.edu/fswiki) |
| Local gyrification index (LGI) | Measures degree of cortical folding in neighborhood of each vertex (spatial map). | | [Freesurfer](https://surfer.nmr.mgh.harvard.edu/fswiki/LGI) |
| BBR criterion | Measures the magnitude of WM/GM contrast across the WM surface boundary | higher better | ([Greve & Fischl, 2009](#ref-Greve2009)), [Freesurfer](https://surfer.nmr.mgh.harvard.edu/fswiki) |

#### Cortical/subcortical segmentation

| Measure | Summary | Interpretation | References |
|--------------------|---------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subcortical volume | Volume of each subcortical region in a segmentation (vector). | | [FIRST](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST), [Freesurfer](https://surfer.nmr.mgh.harvard.edu/fswiki) |
| Cortical volume | Volume of each cortical region in a parcellation (vector). | | ([Alfaro-Almagro et al., 2018](#ref-Alfaro-Almagro2018)), [ANTs](https://github.com/ANTsX/ANTs) [Freesurfer](https://surfer.nmr.mgh.harvard.edu/fswiki), [Mindboggle](https://mindboggle.info/) |
| Cortical thickness | Mean thickness of each region in a parcellation (vector). | | ([Rosen et al., 2018](#ref-Rosen2018)), [ANTs](https://github.com/ANTsX/ANTs), [Freesurfer](https://surfer.nmr.mgh.harvard.edu/fswiki) |

### Functional BOLD

#### Image quality

| Measure | Summary | Interpretation | References |
|-----------------------------------|---------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------|
| EFC | Shannon entropy as indicator of ghosting due to head motion | lower better | [MRIQC](https://mriqc.readthedocs.io/), ([Atkinson et al., 1997](#ref-Atkinson1997)) |
| FBER | Ratio of “mean energy” within head vs air | higher better | [MRIQC](https://mriqc.readthedocs.io/), ([Shehzad et al., 2015](#ref-Shehzad2015)) |
| FWHM | Estimation of image smoothness. Higher values mean blurry. | | [MRIQC](https://mriqc.readthedocs.io/) |
| SNR | SNR within brain mask. | higher better | [MRIQC](https://mriqc.readthedocs.io/) |
| BOLD summary stats | BOLD intensity summary stats (mean, stdev, p95, p05) | | [MRIQC](https://mriqc.readthedocs.io/) |
| Global correlation (GCor) | Average correlation between every voxel and every other voxel | | [AFNI](https://afni.nimh.nih.gov/), [MRIQC](https://mriqc.readthedocs.io/), ([Saad et al., 2013](#ref-Saad2013)) |
| Temporal standard deviation (tSD) | Map of temporal standard deviation | lower better | [MRIQC](https://mriqc.readthedocs.io/), ([Marcus et al., 2013](#ref-Marcus2013)) |
| Temporal SNR (tSNR) | Map of temporal mean divided by standard deviation | higher better | [MRIQC](https://mriqc.readthedocs.io/) |
| Ghost to signal ratio (GSR) | Measures amount of signal in regions prone to ghosting | lower better | [MRIQC](https://mriqc.readthedocs.io/) |
| AFNI outlier ratio (AOR) | Mean fraction of “outliers” per fMRI volume using AFNI `3dToutcount` | lower better | [AFNI](https://afni.nimh.nih.gov/), [MRIQC](https://mriqc.readthedocs.io/) |
| AFNI quality index (AQI) | Mean “quality index”, which for each volume is 1 - correlation to median volume | lower better | [AFNI](https://afni.nimh.nih.gov/), [MRIQC](https://mriqc.readthedocs.io/) |
| Number of dummy scans | Number of non-steady state dummy scans | | [MRIQC](https://mriqc.readthedocs.io/) |
| Carpet plot | BOLD time series for a set of ROIs arranged in a matrix | | [MRIQC](https://mriqc.readthedocs.io/), ([Power, 2017](#ref-Power2017)) |
| Air signal | mean BOLD time series for a set of background/air slices | | [MRIQC](https://mriqc.readthedocs.io/) |

#### Motion correction

| Measure | Summary | Interpretation | References |
|-----------------------------|-----------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DVARS | Measures amount of signal change between consecutive time points (time series) | spikes indicate significant motion | [MRIQC](https://mriqc.readthedocs.io/), [NiPype](https://nipype.readthedocs.io/), [`fsl_motion_outliers`](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers), ([Power et al., 2012](#ref-Power2012)) |
| Framewise displacement (FD) | Sum of absolute translation and rotation displacements in mm at each time point (time series) | spikes indicate significant motion | [MRIQC](https://mriqc.readthedocs.io/), [NiPype](https://nipype.readthedocs.io/), ([Jenkinson et al., 2002](#ref-Jenkinson2002)), ([Power et al., 2012](#ref-Power2012)) |

#### Co-registration

| Measure | Summary | Interpretation | References |
|----------------------|------------------------------------------------------------------------------|----------------|----------------------------------------------------|
| Co-registration cost | Cost function for rigid registration between BOLD and T1 | lower better | [XCP](https://xcpengine.readthedocs.io/index.html) |
| Brain mask overlap | Dice or Jaccard brain mask overlap coefficient between resampled BOLD and T1 | higher better | [XCP](https://xcpengine.readthedocs.io/index.html) |

#### Functional connectivity

**TODO**

### Diffusion weighted imaging (DWI)

#### Image quality

| Measure | Summary | Interpretation | References |
|---------------------------|-------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Mean neighbor correlation | Average Pearson correlation between each diffusion image and its q-space nearest neighbor | expected range `[0.6, 0.8]` | [QSIprep](https://qsiprep.readthedocs.io/), [DSI Studio](https://dsi-studio.labsolver.org/), ([Yeh et al., 2019](#ref-Yeh2019)) |
| Dropout slice count | Count of slices with significant signal dropout | expected less than 0.1% | [QSIprep](https://qsiprep.readthedocs.io/), [DSI Studio](https://dsi-studio.labsolver.org/), ([Yeh et al., 2019](#ref-Yeh2019)) |
| Fiber coherence index | Measures how well fibers are connected to each other | low values indicate flipped b-vectors | [QSIprep](https://qsiprep.readthedocs.io/), [DSI Studio](https://dsi-studio.labsolver.org/), ([Schilling et al., 2019](#ref-Schilling2019)) |

#### Fiber orientation modeling

**TODO**

#### Tractography

**TODO**

#### Structural connectivity

**TODO**

## References

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L.,
Griffanti, L., Douaud, G., Sotiropoulos, S. N., Jbabdi, S.,
Hernandez-Fernandez, M., Vallee, E., et al. (2018). Image processing and
quality control for the first 10,000 brain imaging datasets from UK
biobank. *Neuroimage*, *166*, 400–424.

Atkinson, D., Hill, D. L., Stoyle, P. N., Summers, P. E., & Keevil, S.
F. (1997). Automatic correction of motion artifacts in magnetic
resonance images using an entropy focus criterion. *IEEE Transactions on
Medical Imaging*, *16*(6), 903–910.

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based
analysis: I. Segmentation and surface reconstruction. *Neuroimage*,
*9*(2), 179–194.

Das, D., Etzel, J., Esteban, O., MacNicol, E., Ghosh, S., &
Alfaro-Almagro, F. (2022). *ISMRM’22 QC book*.
.

Dietrich, O., Raya, J. G., Reeder, S. B., Reiser, M. F., & Schoenberg,
S. O. (2007). Measurement of signal-to-noise ratios in MR images:
Influence of multichannel coils, parallel imaging, and reconstruction
filters. *Journal of Magnetic Resonance Imaging: An Official Journal of
the International Society for Magnetic Resonance in Medicine*, *26*(2),
375–385.

Ganzetti, M., Wenderoth, N., & Mantini, D. (2016). Intensity
inhomogeneity correction of structural MR images: A data-driven approach
to define input algorithm parameters. *Frontiers in Neuroinformatics*,
*10*, 10.

Glover, G. H., Mueller, B. A., Turner, J. A., Van Erp, T. G., Liu, T.
T., Greve, D. N., Voyvodic, J. T., Rasmussen, J., Brown, G. G., Keator,
D. B., et al. (2012). Function biomedical informatics research network
recommendations for prospective multicenter functional MRI studies.
*Journal of Magnetic Resonance Imaging*, *36*(1), 39–54.

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image
alignment using boundary-based registration. *Neuroimage*, *48*(1),
63–72.

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved
optimization for the robust and accurate linear registration and motion
correction of brain images. *Neuroimage*, *17*(2), 825–841.

Klapwijk, E. T., Van De Kamp, F., Van Der Meulen, M., Peters, S., &
Wierenga, L. M. (2019). Qoala-t: A supervised-learning tool for quality
control of FreeSurfer segmented MRI data. *Neuroimage*, *189*, 116–129.

Magnotta, V. A., & Friedman, L. (2006). Measurement of signal-to-noise
and contrast-to-noise in the fBIRN multicenter imaging study. *Journal
of Digital Imaging*, *19*(2), 140–147.

Marcus, D. S., Harms, M. P., Snyder, A. Z., Jenkinson, M., Wilson, J.
A., Glasser, M. F., Barch, D. M., Archie, K. A., Burgess, G. C.,
Ramaratnam, M., et al. (2013). Human connectome project informatics:
Quality control, database services, and data visualization.
*Neuroimage*, *80*, 202–219.

Mortamet, B., Bernstein, M. A., Jack Jr, C. R., Gunter, J. L., Ward, C.,
Britson, P. J., Meuli, R., Thiran, J.-P., & Krueger, G. (2009).
Automatic quality assessment in structural brain magnetic resonance
imaging. *Magnetic Resonance in Medicine: An Official Journal of the
International Society for Magnetic Resonance in Medicine*, *62*(2),
365–372.

Power, J. D. (2017). A simple but useful way to assess fMRI scan
qualities. *Neuroimage*, *154*, 150–158.

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., &
Petersen, S. E. (2012). Spurious but systematic correlations in
functional connectivity MRI networks arise from subject motion.
*Neuroimage*, *59*(3), 2142–2154.

Rosen, A. F., Roalf, D. R., Ruparel, K., Blake, J., Seelaus, K., Villa,
L. P., Ciric, R., Cook, P. A., Davatzikos, C., Elliott, M. A., et al.
(2018). Quantitative assessment of structural image quality.
*Neuroimage*, *169*, 407–418.

Saad, Z. S., Reynolds, R. C., Jo, H. J., Gotts, S. J., Chen, G., Martin,
A., & Cox, R. W. (2013). Correcting brain-wide correlation differences
in resting-state FMRI. *Brain Connectivity*, *3*(4), 339–352.

Schilling, K. G., Yeh, F.-C., Nath, V., Hansen, C., Williams, O.,
Resnick, S., Anderson, A. W., & Landman, B. A. (2019). A fiber coherence
index for quality control of b-table orientation in diffusion MRI scans.
*Magnetic Resonance Imaging*, *58*, 82–89.

Shehzad, Z., Giavasis, S., Li, Q., Benhajali, Y., Yan, C., Yang, Z.,
Milham, M., Bellec, P., & Craddock, C. (2015). The preprocessed
connectomes project quality assessment protocol-a resource for measuring
the quality of MRI data. *Frontiers in Neuroscience*, *47*.

Sreedher, G., Ho, M.-L., Smith, M., Udayasankar, U. K., Risacher, S.,
Rapalino, O., Greer, M.-L. C., Doria, A. S., & Gee, M. S. (2021).
Magnetic resonance imaging quality control, quality assurance and
quality improvement. *Pediatric Radiology*, *51*(5), 698–708.

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A.,
Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias
correction. *IEEE Transactions on Medical Imaging*, *29*(6), 1310–1320.

Yeh, F.-C., Zaydan, I. M., Suski, V. R., Lacomis, D., Richardson, R. M.,
Maroon, J. C., & Barrios-Martinez, J. (2019). Differential tractography
as a track-based biomarker for neuronal injury. *Neuroimage*, *202*,
116131.