Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/LirongWu/awesome-graph-self-supervised-learning

Code for TKDE paper "Self-supervised learning on graphs: Contrastive, generative, or predictive"
https://github.com/LirongWu/awesome-graph-self-supervised-learning

List: awesome-graph-self-supervised-learning

data-augmentation deep-learning graph-neural-networks machine-learning pre-training pretext-task representation-learning self-supervised-learning transfer-learning unsupervised-learning

Last synced: 2 months ago
JSON representation

Code for TKDE paper "Self-supervised learning on graphs: Contrastive, generative, or predictive"

Awesome Lists containing this project

README

        

# Awesome Graph Self-Supervised Learning

![PRs Welcome](https://img.shields.io/badge/PRs-Welcome-green)[![Awesome](https://awesome.re/badge.svg)](https://awesome.re)![GitHub stars](https://img.shields.io/github/stars/LirongWu/awesome-graph-self-supervised-learning?color=yellow) ![GitHub forks](https://img.shields.io/github/forks/LirongWu/awesome-graph-self-supervised-learning?color=blue&label=Fork)

A curated list for awesome self-supervised graph representation learning resources. Inspired by [awesome-deep-vision](https://github.com/kjw0612/awesome-deep-vision), [awesome-adversarial-machine-learning](https://github.com/yenchenlin/awesome-adversarial-machine-learning), [awesome-deep-learning-papers](https://github.com/terryum/awesome-deep-learning-papers), [awesome-architecture-search](https://github.com/markdtw/awesome-architecture-search), and [awesome-self-supervised-learning](https://github.com/jason718/awesome-self-supervised-learning).

#### Why Self-Supervised?
> Self-Supervised Learning has become an exciting direction in AI community.

- Jitendra Malik: "Supervision is the opium of the AI researcher"
- Alyosha Efros: "The AI revolution will not be supervised"
- Yann LeCun: "self-supervised learning is the cake, supervised learning is the icing on the cake, reinforcement learning is the cherry on the cake"

## Table of Contents

- [Overview](#Overview)
- [Training Strategy](#Training-Strategy)
- [Contrastive Learning](#Contrastive-Learning)
- [Same-Scale Contrasting](#Global-Global-Contrasting)
- [Global-Global Contrasting](#Global-Global-Contrasting)
- [Context-Context Contrasting](#Context-Context-Contrasting)
- [Local-Local Contrasting](#Local-Local-Contrasting)
- [Corss-Scale Contrasting](#Local-Global-Contrasting)
- [Local-Global Contrasting](#Local-Global-Contrasting)
- [Local-Context Contrasting](#Local-Context-Contrasting)
- [Context-Global Contrasting](#Context-Global-Contrasting)
- [Generative Learning](#Generative-Learning)
- [Graph Autoencoding](#Graph-Autoencoding)
- [Graph Autoregression](#Graph-Autoregression)
- [Predictive Learning](#Predictive-Learning)
- [Node Property Prediction](#Node-Property-Prediction)
- [Context-based Prediction](#Context-based-Prediction)
- [Self-Training](#Self-Training)
- [Domain Knowledge-based Prediction](#Domain-Knowledge-based-Prediction)
- [A Summary of Methodology Details](#A-Summary-of-Methodology-Details)
- [A Summary of Implementation Details](#A-Summary-of-Implementation-Details)
- [A Summary of Common Graph Datasets](#A-Summary-of-Common-Graph-Datasets)
- [A Summary of Open-source Codes](#A-Summary-of-Open-source-Codes)

## Overview

We extend the concept of self-supervised learning, which first emerged in the fields of computer vision and natural language processing, to present a timely and comprehensive review of the existing SSL techniques for graph data. Specifically, we divide existing graph SSL methods into three categories: contrastive, generative, and predictive as shown below.



- Contrastive Learning: it contrasts the views generated by different data augmentation methods. The information about the differences and sameness between data-data pairs (inter-data) is used as self-supervision signals.
- Generative Learning: it focuses on the (intra-data) information embedded in the data, generally based on prtext tasks such as reconstruction, which exploit the attributes and structure of the data itself as self-supervision signals.
- Predictive Learning: it generally self-generates labels from graph data through some simple statistical analysis, or expert knowledge, and designs prediction-based pretext tasks based on the self-generated labels to handle the data-label relationship.

## Training Strategy

Considering the relationship among bottleneck encoders, self-supervised pretext tasks, and downstream tasks, the training strategies can be divided into three categories: Pre-training and Fine-tuning (P\&F), Joint Learning (JL), and Unsupervised Representation Learning (URL), with their detailed workflow shown below.



- Pre-train\&Fine-tune (P&F): it first pre-trains the encoder with unlabeled nodes by the self-supervised pretext tasks. The pre-trained encoder’s parameters are then used as the initialization of the encoder used in supervised fine-tuning for downstream tasks.
- Joint Learning (JL): an auxiliary pretext task with self-supervision is included to help learn the supervised downstream task. The encoder is trained through both the pretext task and the downstream task simultaneously.
- Unsupervised Representation Learning (URL): it first pre-trains the encoder with unlabeled nodes by the self-supervised pretext tasks. The pre-trained encoder’s parameters are then frozen and used in the supervised downstream task with additional labels.

## Contrastive Learning

A general framework for contrastive learning is shown below. The two contrasting components may be local, contextual, or global, corresponding to node-level (marked in red), subgraph-level (marked in green), or graph-level (marked in yellow) information in the graph. The contrastive learning can thus contrast two views (at the *same* or *different* scales), which leads to two categories of algorithm: (1) same-scale contrasting, including *Local-Local (L-L)* contrasting, *Context-Context (C-C)* contrasting, and *Global-Global (G-G)* contrasting; and (2) cross-scale contrasting, including *Local-Context (L-C)* contrasting, *Local-Global (L-G)* contrasting, and *Context-Global (C-G)* contrasting.



#### Global-Global Contrasting

- GraphCL: Graph Contrastive Learning with Augmentations.
- Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. *NIPS 2020*. [[pdf]](https://proceedings.neurips.cc/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf) [[code]](https://github.com/Shen-Lab/GraphCL)
- IGSD: Iterative Graph Self-Distillation.
- H. Zhang, S. Lin, W. Liu, P. Zhou, J. Tang, X. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2010.12609.pdf)
- DACL: Towards Domain-Agnostic Contrastive Learning.
- V. Verma, M.-T. Luong, K. Kawaguchi, H. Pham, andQ. V. Le. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2011.04419.pdf)
- LCC: Label Contrastive Coding Based Graph Neural Network for Graph Classification.
- Y. Ren, J. Bai, and J. Zhang. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2101.05486.pdf) [[code]](https://github.com/YuxiangRen/Label-Contrastive-Coding-based-Graph-Neural-Network-for-Graph-Classification-)
- CCGL: Contrastive Cascade Graph Learning.
- X. Xu, F. Zhou, K. Zhang, and S. Liu. *TKDE 2022*. [[pdf]](https://arxiv.org/pdf/2107.12576) [[code]](https://github.com/Xovee/ccgl)
- CSSL: Contrastive Self-Supervised Learning for Graph Classification.
- J. Zeng and P. Xie. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2009.05923.pdf)

#### Context-Context Contrasting

- GCC: Graph Contrastive Coding for Graph Neural Network Pre-training.
- J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, and J. Tang. *KDD 2020*. [[pdf]](https://arxiv.org/pdf/2006.09963.pdf) [[code]](https://github.com/THUDM/GCC)

#### Local-Local Contrasting

- CDNMF: Contrastive Deep Nonnegative Matrix Factorization for Community Detection.
- Y. Li, J. Chen, C. Chen, L. Yang, Z. Zheng. *ICASSP 2024*. [[pdf]](https://arxiv.org/abs/2311.02357) [[code]](https://github.com/6lyc/CDNMF)
- GRACE: Deep Graph Contrastive Representation Learning.
- Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.04131.pdf) [[code]](https://github.com/CRIPAC-DIG/GRACE)
- GCA: Graph Contrastive Learning with Adaptive Augmentation.
- Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2010.14945.pdf) [[code]](https://github.com/CRIPAC-DIG/GCA)
- GROC: Towards Robust Graph Contrastive Learning.
- N. Jovanovi´c, Z. Meng, L. Faber, and R. Wattenhofer. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2102.13085.pdf)
- SEPT: Socially-Aware Self-Supervised Tri-Training for Recommendation.
- J. Yu, H. Yin, M. Gao, X. Xia, X. Zhang, and N. Q. V.Hung. *Arxiv 2021*. [[pdf]](https://arxiv.org/abs/2106.03569) [[code]](https://github.com/Coder-Yu/QRec)
- STDGI: Spatio-Temporal Deep Graph Infomax.
- F. L. Opolka, A. Solomon, C. Cangea, P. Veliˇckovi´c, P. Li` o, and R. D. Hjelm. *Arxiv 2019*. [[pdf]](https://arxiv.org/pdf/1904.06316.pdf)
- GMI: Graph Representation Learning via Graphical Mutual Information Maximization.
- L. Yu, S. Pei, C. Zhang, L. Ding, J. Zhou, L. Li, and X. Zhang. *WWW 2020*. [[pdf]](https://arxiv.org/pdf/2002.01169.pdf) [[code]](https://github.com/zpeng27/GMI)
- KS2L: Self-Supervised Smoothing Graph Neural Networks.
- L. Yu, S. Pei, C. Zhang, L. Ding, J. Zhou, L. Li, and X. Zhang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2009.00934.pdf)
- CG3: Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning.
- S. Wan, S. Pan, J. Yang, and C. Gong. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2009.07111.pdf)
- BGRL: Bootstrapped Representation Learning on Graphs.
- S. Thakoor, C. Tallec, M. G. Azar, R. Munos, P. Veliˇckovi´c, and M. Valko. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2102.06514.pdf)[[code]](https://github.com/nerdslab/bgrl)
- SelfGNN: Self-supervised Graph Neural Networks without Explicit Negative Sampling.
- Z. T. Kefato and S. Girdzijauskas. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2103.14958.pdf) [[code]](https://github.com/zekarias-tilahun/SelfGNN)
- HeCo: Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning.
- X. Wang, N. Liu, H. Han, and C. Shi. *Arxiv 2021*. [[pdf]](https://arxiv.org/abs/2105.09111) [[code]](https://github.com/liun-online/HeCo)
- PT-DGNN: Pre-training on Dynamic Graph Neural Networks.
- J. Zhang, K. Chen, and Y. Wang. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2102.12380.pdf) [[code]](https://github.com/Mobzhang/PT-DGNN)
- COAD: Coad: Contrastive Pretraining with Adversarial Fine-tuning for Zero-shot Expert Linking.
- B. Chen, J. Zhang, X. Zhang, X. Tang, L. Cai, H. Chen, C. Li, P. Zhang, and J. Tang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2012.11336.pdf) [[code]](https://github.com/allanchen95/Expert-Linking)
- Contrast-Reg: Improving Graph Representation Learning by Contrastive Regularization.
- K. Ma, H. Yang, H. Yang, T. Jin, P. Chen, Y. Chen, B. F. Kamhoua, and J. Cheng. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2101.11525.pdf)
- C-SWM: Contrastive Learning of Structured World Models.
- T. Kipf, E. van der Pol, and M. Welling. *Arxiv 2019. [[pdf]](https://arxiv.org/pdf/1911.12247.pdf) [[code]](https://github.com/tkipf/c-swm)

#### Local-Global Contrasting

- DGI: Deep Graph Infomax.
- P. Velickovic, W. Fedus, W. L. Hamilton, P. Li` o, Y. Bengio, and R. D. Hjelm. *ICLR 2019*. [[pdf]](https://arxiv.org/pdf/1809.10341.pdf) [[code]](https://github.com/PetarV-/DGI)
- HDMI: Hdmi: High-order Deep Multiplex Infomax.
- B. Jing, C. Park, and H. Tong. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2102.07810.pdf)
- DMGI: Unsupervised Attributed Multiplex Network Embedding.
- C. Park, D. Kim, J. Han, and H. Yu. *AAAI 2020*. [[pdf]](https://ojs.aaai.org/index.php/AAAI/article/view/5985/5841) [[code]](https://github.com/pcy1302/DMGI)
- MVGRL: Contrastive Multi-View Representation Learning on Graphs.
- K. Hassani and A. H. K. Ahmadi. *ICML 2020*. [[pdf]](http://proceedings.mlr.press/v119/hassani20a/hassani20a.pdf) [[code]](https://github.com/kavehhassani/mvgrl)
- HDGI: Heterogeneous Deep Graph Infomax.
- Y. Ren, B. Liu, C. Huang, P. Dai, L. Bo, and J. Zhang. *Arxiv 2019*. [[pdf]](https://arxiv.org/pdf/1911.08538.pdf) [[code]](https://github.com/YuxiangRen/Heterogeneous-Deep-Graph-Infomax)

#### Local-Context Contrasting

- CDNMF: Contrastive Deep Nonnegative Matrix Factorization for Community Detection.
- Y. Li, J. Chen, C. Chen, L. Yang, Z. Zheng. *ICASSP 2024*. [[pdf]](https://arxiv.org/abs/2311.02357) [[code]](https://github.com/6lyc/CDNMF)
- Subg-Con: Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning.
- Y. Jiao, Y. Xiong, J. Zhang, Y. Zhang, T. Zhang, and Y. Zhu. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2009.10273.pdf) [[code]](https://github.com/yzjiao/Subg-Con)
- Cotext Prediction: Strategies for Pre-training Graph Neural Networks.
- W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. S. Pande, and J. Leskovec. *ICLR 2020*. [[pdf]](https://arxiv.org/pdf/1905.12265.pdf) [[code]](http://snap.stanford.edu/gnn-pretrain)
- GIC: Leveraging Cluster-level Node Information for Unsupervised Graph Representation Learning.
- C. Mavromatis and G. Karypis. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2009.06946.pdf) [[code]](https://github.com/cmavro/Graph-InfoClust-GIC)
- GraphLoG: Self-Supervised Graph-level Representation Learning with Local and Global Structure.
- M. Xu, H. Wang, B. Ni, H. Guo, and J. Tang. *OpenReview 2021*. [[pdf]](https://openreview.net/forum?id=DAaaaqPv9-q) [[code]](https://openreview.net/forum?id=DAaaaqPv9-q)
- MHCN: Self-Supervised Multi-channel Hypergraph Convolutional Network for Social Recommendation.
- J. Yu, H. Yin, J. Li, Q. Wang, N. Q. V. Hung, and X. Zhang. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2101.06448.pdf) [[code]](https://github.com/Coder-Yu/RecQ)
- EGI: Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization.
- Q. Zhu, Y. Xu, H.Wang, C. Zhang, J. Han, and C. Yang. *Arxiv 2020*. [[pdf]](https://arxiv.org/abs/2009.05204) [[code]](https://openreview.net/forum?id=J_pvI6ap5Mn)

#### Context-Global Contrasting

- MICRO-Graph: Motif-Driven Contrastive Learning of Graph Representations.
- S. Zhang, Z. Hu, A. Subramonian, and Y. Sun. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2012.12533.pdf) [[code]](https://drive.google.com/file/d/1b751rpnV-SDmUJvKZZI-AvpfEa9eHxo9/)
- InfoGraph: Unsupervised and Semi-Supervised Graph-level Representation Learning via Mutual Information Maximization.
- F. Sun, J. Hoffmann, V. Verma, and J. Tang. *ICLR 2020*. [[pdf]](https://arxiv.org/pdf/1908.01000.pdf) [[code]](https://github.com/fanyun-sun/InfoGraph)
- SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism.
- Q. Sun, H. Peng, J. Li, J. Wu, Y. Ning, P. S. Yu, and L. He. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2101.08170.pdf) [[code]](https://github.com/RingBDStack/SUGAR)
- BiGI: Bipartite Graph Embedding via Mutual Information Maximization.
- J. Cao, X. Lin, S. Guo, L. Liu, T. Liu, and B. Wang. *WSDM 2021*. [[pdf]](https://arxiv.org/abs/1505.05192) [[code]](https://github.com/clhchtcjj/BiNE)
- HTC: Graph Representation Learning by Ensemble Aggregating Subgraphs via Mutual Information Maximization.
- C. Wang and Z. Liu. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2103.13125.pdf)
- DITNet: Drug Target Prediction using Graph Representation Learning via Substructures Contrast.
- S. Cheng, L. Zhang, B. Jin, Q. Zhang, and X. Lu. *Preprints 2021*. [[pdf]](https://www.preprints.org/manuscript/202103.0337/v1) [[code]](https://github.com/FangpingWan/NeoDTI)

## Generative Learning

#### Graph Autoencoding
- CDNMF: Contrastive Deep Nonnegative Matrix Factorization for Community Detection.
- Y. Li, J. Chen, C. Chen, L. Yang, Z. Zheng. *ICASSP 2024*. [[pdf]](https://arxiv.org/abs/2311.02357) [[code]](https://github.com/6lyc/CDNMF)
- GraphMAE: Self-supervised Masked Graph Autoencoders
- Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, and J. Tang. *KDD 2022* [[pdf]](https://arxiv.org/pdf/2205.10803.pdf) [[code]](https://github.com/THUDM/GraphMAE)
- Graph Completion: When Does Self-Supervision Help Graph Convolutional Networks?
- Y. You, T. Chen, Z. Wang, and Y. Shen. *PMLR 2020*. [[pdf]](http://proceedings.mlr.press/v119/you20a/you20a.pdf) [[code]](https://github.com/Shen-Lab/SS-GCNs)
- Node Attribute Masking: Self-Supervised Learning on Graphs: Deep Insights and New Direction.
- W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.10141.pdf) [[code]](https://github.com/ChandlerBang/SelfTask-GNN)
- Edge Attribute Masking: Strategies for Pre-training Graph Neural Networks.
- W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. S. Pande, and J. Leskovec. *ICLR 2020*. [[pdf]](https://arxiv.org/pdf/1905.12265.pdf) [[code]](http://snap.stanford.edu/gnn-pretrain)
- Node Attribute and Embedding Denoising: Graph-based Neural Network Models with Multiple Self-Supervised Auxiliary Tasks.
- F. Manessi and A. Rozza. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2011.07267.pdf)
- Adjacency Matrix Reconstruction: Self-Supervised Training of Graph Convolutional Networks.
- Q. Zhu, B. Du, and P. Yan. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.02380.pdf)
- Graph Bert: Only Attention is Needed for Learning Graph Representations.
- J. Zhang, H. Zhang, C. Xia, and L. Sun. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2001.05140.pdf) [[code]](https://github.com/anonymous-sourcecode/Graph-Bert)
- Pretrain-Recsys: Pretraining Graph Neural Networks for Cold-start Users and Items Representation.
- B. Hao, J. Zhang, H. Yin, C. Li, and H. Chen. *WSDM 2021*. [[pdf]](https://dl.acm.org/doi/abs/10.1145/3437963.3441738) [[code]](https://github.com/jerryhao66/Pretrain-Recsys)
- SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks.
- B. Fatemi, L. E. Asri, and S. M. Kazemi. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2102.05034.pdf) [[code]](https://github.com/BorealisAI/SLAPS-GNN)
- G-BERT: Pre-Training of Graph Augmented Transformers for Medication Recommendation.
- J. Shang, T. Ma, C. Xiao, and J. Sun. *Arxiv 2019*. [[pdf]](https://arxiv.org/pdf/1906.00346.pdf) [[code]](https://github.com/jshang123/G-Bert)

#### Graph Autoregression

- GPT-GNN: Generative Pre-training of Graph Neural Networks.
- Z. Hu, Y. Dong, K. Wang, K. Chang, and Y. Sun. *KDD 2020*. [[pdf]](https://dl.acm.org/doi/pdf/10.1145/3394486.3403237) [[code]](https://github.com/acbull/GPT-GNN)

## Predictive Learning

A comparison of the predictive learning is shown below. The predictive method generally self-generates labels from graph data and then designs prediction-based pretext tasks based on the self-generated labels. Categorized by how the labels areobtained, we summarize predictive learning methods forgraph data into four categories:

- Node Property Prediction: it pre-calculates the node properties, such as node degree and used them as self-supervised labels.
- Context-based Prediction: the local or global contextual information in the graph, such as the shortest path length between nodes can be extracted as labels to help with self-supervised learning.
- Self-Training: it applies algorithms such as unsupervised clustering to obtain pseudo-labels and then updates the pseudo-label set of the previous stage based on the prediction results or losses.
- Domain Knowledge-based Prediction: the domain knowledge, such as expert knowledge or specialized tools, can be used in advance to obtain informative labels.



#### Node Property Prediction

- Node Property Prediction: Self-Supervised Learning on Graphs: Deep Insights and New Direction.
- W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.10141.pdf) [[code]](https://github.com/ChandlerBang/SelfTask-GNN)

#### Context-based Prediction

- S2GRL: Self-Supervised Graph Representation Learning via Global Context Prediction.
- Z. Peng, Y. Dong, M. Luo, X.-M. Wu, and Q. Zheng. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2003.01604.pdf)
- PairwiseDistance: Self-Supervised Learning on Graphs: Deep Insights and New Direction.
- W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.10141.pdf) [[code]](https://github.com/ChandlerBang/SelfTask-GNN)
- PairwiseAttsim: Self-Supervised Learning on Graphs: Deep Insights and New Direction.
- W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.10141.pdf) [[code]](https://github.com/ChandlerBang/SelfTask-GNN)
- Distance2Cluster: Self-Supervised Learning on Graphs: Deep Insights and New Direction.
- W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.10141.pdf) [[code]](https://github.com/ChandlerBang/SelfTask-GNN)
- EdgeMask: Self-Supervised Learning on Graphs: Deep Insights and New Direction.
- W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.10141.pdf) [[code]](https://github.com/ChandlerBang/SelfTask-GNN)
- TopoTER: Unsupervised Learning of Topology Transformation Equivariant Representations.
- X. Gao, W. Hu, and G.-J. Qi. *OpenReview 2021*. [[pdf]](https://openreview.net/forum?id=9az9VKjOx00)
- Centrality Score Ranking: Pretraining Graph Neural Networks for Generic Structural Feature Extraction.
- Z. Hu, C. Fan, T. Chen, K.-W. Chang, and Y. Sun. *Arxiv 2019*. [[pdf]](https://arxiv.org/pdf/1905.13728.pdf)
- Meta-path prediction: Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs.
- D. Hwang, J. Park, S. Kwon, K. Kim, J. Ha, and H. J. Kim. *NIPS 2020*. [[pdf]](https://arxiv.org/pdf/2007.08294.pdf) [[code]](https://github.com/mlvlab/SELAR)
- SLiCE: Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks.
- P. Wang, K. Agarwal, C. Ham, S. Choudhury, and C. K. Reddy. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2007.11192.pdf) [[code]](https://github.com/pnnl/SLICE)
- Distance2Labeled: Self-Supervised Learning on Graphs: Deep Insights and New Direction.
- W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.10141.pdf) [[code]](https://github.com/ChandlerBang/SelfTask-GNN)
- Distance2Labeled: Self-Supervised Learning on Graphs: Deep Insights and New Direction.
- W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2006.10141.pdf) [[code]](https://github.com/ChandlerBang/SelfTask-GNN)
- HTM: Hop-count based Self-Supervised Anomaly Detection on Attributed Networks.
- T. Huang, Y. Pei, V. Menkovski, and M. Pechenizkiy. *Arxiv 2021*. [[pdf]](https://arxiv.org/pdf/2104.07917.pdf)

#### Self-Training

- Multi-stage Self-training: Deeper insights into Graph Convolutional Networks for Semi-Supervised Learning.
- Q. Li, Z. Han, and X. Wu. *AAAI 2018*. [[pdf]](https://ojs.aaai.org/index.php/AAAI/article/view/11604) [[code]](https://github.com/Davidham3/deeper_insights_into_GCNs)
- Node Clustering and Partitioning: When Does Self-Supervision Help Graph Convolutional Networks.
- Y. You, T. Chen, Z. Wang, and Y. Shen. *PMLR 2020*. [[pdf]](http://proceedings.mlr.press/v119/you20a/you20a.pdf) [[code]](https://github.com/Shen-Lab/SS-GCNs)
- CAGAN: Cluster-Aware Graph Neural Networks for Unsupervised Graph Representation Learning.
- Y. Zhu, Y. Xu, F. Yu, S. Wu, and L. Wang. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2009.01674.pdf)
- M3S: Multi-stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labeled Nodes.
- K. Sun, Z. Lin, and Z. Zhu. *AAAI 2020*. [[pdf]](https://deepai.org/publication/multi-stage-self-supervised-learning-for-graph-convolutional-networks) [[code]](https://github.com/datake/M3S)
- Cluster Preserving: Pretraining Graph Neural Networks for Generic Structural Feature Extraction.
- Z. Hu, C. Fan, T. Chen, K.-W. Chang, and Y. Sun. *Arxiv 2019*. [[pdf]](https://arxiv.org/pdf/1905.13728.pdf)
- SEF: Self-Supervised Edge Features for Improved Graph Neural Network Training.
- A. Sehanobish, N. G. Ravindra, and D. van Dijk. *Arxiv 2020*. [[pdf]](https://arxiv.org/pdf/2007.04777.pdf)[[code]](https://github.com/nealgravindra/self-supervsed_edge_feats)

#### Domain Knowledge-based Prediction

- Contextual Molecular Property Prediction: Self-Supervised Graph Transformer on Large-Scale Molecular Data.
- Y. Rong, Y. Bian, T. Xu, W. Xie, Y. Wei, W. Huang, and J. Huang. *NIPS 2020*. [[pdf]](https://drug.ai.tencent.com/publications/GROVER.pdf) [[code]](https://github.com/tencent-ailab/grover)
- Graph-level Motif Prediction: Self-Supervised Graph Transformer on Large-scale Molecular Data.
- Y. Rong, Y. Bian, T. Xu, W. Xie, Y. Wei, W. Huang, and J. Huang. *NIPS 2020*. [[pdf]](https://drug.ai.tencent.com/publications/GROVER.pdf) [[code]](https://github.com/tencent-ailab/grover)
- DrRepair: Graph-based, Self-Supervised Program Repair from Diagnostic Feedback.
- M. Yasunaga and P. Liang. *PMLR 2020*. [[pdf]](http://proceedings.mlr.press/v119/yasunaga20a/yasunaga20a.pdf) [[code]](https://github.com/michiyasunaga/DrRepair)

A summary of all the surveyed works is presented below.



## A Summary of Methodology Details
About Graph Property, Pretext Task, Data Augmentation, Objective Function, Training Strategy, and Year of publication.

| Methods | Graph Property | Pretext-Task | Data Augmentation | Objective Function | Training Strategy | Year |
| :------------------------------------------- | :--------------: | :---------------------------: | :----------------------------------------------------------: | :---------------------------------------------------: | :---------------: | :--: |
| CDNMF | Attributed | Contrastive/L-C + Generative/AE | None | InfoNCE + AE | URL | 2024 |
| Graph Completion | Attributed | Generative/AE | Attribute Masking | MAE | P\&F/JL | 2020 |
| Node Attribute Masking | Attributed | Generative/AE | Attribute Masking | MAE | P\&F/JL | 2020 |
| Edge Attribute Masking | Attributed | Generative/AE | Attribute Masking | MAE | P\&F | 2019 |
| Node Attribute and
Embedding Denoising | Attributed | Generative/AE | Attribute Masking | MAE | JL | 2020 |
| Adjacency Matrix
Reconstruction | Attributed | Generative/AE | Attribute Masking
Edge Perturbation | MAE | JL | 2020 |
| Graph Bert | Attributed | Generative/AE | Attribute Masking
Edge Perturbation | MAE | P\&F | 2020 |
| Pretrain-Recsys | Attributed | Generative/AE | Edge Perturbation | MAE | P\&F | 2021 |
| GPT-GNN | Heterogeneous | Generative/AR | Attribute Masking
Edge Perturbation | MAE/InfoNCE | P\&F | 2020 |
| GraphCL | Attributed | Contrastive/G-G | Attribute Masking
Edge Perturbation
Random Walk Sampling | InfoNCE | URL | 2020 |
| IGSD | Attributed | Contrastive/G-G | Edge Perturbation
Edge Doffisopm | InfoNCE | JL/URL | 2020 |
| DACL | Attributed | Contrastive/G-G | Mixup | InfoNCE | URL | 2020 |
| LCC | Attributed | Contrastive/G-G | None | InfoNCE | JL | 2021 |
| CCGL | Attributed | Contrastive/G-G | Information Re-Diffusion | InfoNCE | P\&F | 2021 |
| CSSL | Attributed | Contrastive/G-G | NodeInsertion
Edge Perturbation
Uniform Sampling | InfoNCE | P\&F/JL/URL | 2020 |
| GCC | Unattributed | Contrastive/C-C | Random Walk Sampling | InfoNCE | P\&F/URL | 2020 |
| GRACE | Attributed | Contrastive/L-L | Attribute Masking
Edge Perturbation | InfoNCE | URL | 2020 |
| GCA | Attributed | Contrastive/L-L | Attention-based | InfoNCE | URL | 2020 |
| GROC | Attributed | Contrastive/L-L | Gradient-based | InfoNCE | URL | 2021 |
| SEPT | Attributed | Contrastive/L-L | Edge Perturbation | InfoNCE | JL | 2021 |
| STDGI | Spatial-Temporal | Contrastive/L-L | Attribute Shuffling | JS Estimator | URL | 2019 |
| GMI | Attributed | Contrastive/L-L | None | SP Estimator | URL | 2020 |
| KS2L | Attributed | Contrastive/L-L | None | InfoNCE | URL | 2020 |
| CG3 | Attributed | Contrastive/L-L | None | InfoNCE | JL | 2020 |
| BGRL | Attributed | Contrastive/L-L | Attribute Masking
Edge Perturbation | Inner Product | URL | 2021 |
| SelfGNN | Attributed | Contrastive/L-L | Attribute Masking
Edge Diffusion | MSE | URL | 2021 |
| HeCo | Heterogeneous | Contrastive/L-L | None | InfoNCE | URL | 2021 |
| PT-DGNN | Dynamic | Contrastive/L-L | Attribute Masking
Edge Perturbation | InforNCE | P\&F | 2021 |
| COAD | Attributed | Contrastive/L-L | None | Triplet Margin Loss | P\&F | 2020 |
| Contrst-Reg | Attributed | Contrastive/L-L | Attribute Shuffling | InfoNCE | JL | 2021 |
| DGI | Attributed | Contrastive/L-G | Arbitrary | JS Estimator | URL | 2019 |
| HDMI | Attributed | Contrastive/L-G | Attribute Shuffling | JS Estimator | URL | 2021 |
| DMGI | Heterogeneous | Contrastive/L-G | Attribute Shuffling | JS Estimator/MAE | URL | 2020 |
| MVGRL | Attributed | Contrastive/L-G | Attribute Masking
Edge Perturbation
Edge Diffusion
Random Walk Sampling | DV Estimator
JS Estimator
NT-Xent
InfoNCE | URL | 2020 |
| HDGI | Heterogeneous | Contrastive/L-G | Attribute Shuffling | JS Estimator | URL | 2019 |
| Subg-Con | Attributed | Contrastive/L-C | Importance Sampling | Triplet Margin Loss | URL | 2020 |
| Cotext Prediction | Attributed | Contrastive/L-C | Ego-nets Sampling | Cross Entropy | P\&F | 2019 |
| GIC | Attributed | Contrastive/L-C | Arbitrary | JS Estimator | URL | 2020 |
| GraphLoG | Attributed | Contrastive/L-C | Attribute Masking | InfoNCE | URL | 2021 |
| MHCN | Heterogeneous | Contrastive/L-C | Attribute Shuffling | InfoNCE | JL | 2021 |
| EGI | Attributed | Contrastive/L-C | Ego-nets Sampling | SP Estimator | P\&F | 2020 |
| MICRO-Graph | Attributed | Contrastive/C-G | Knowledge Sampling | InfoNCE | URL | 2020 |
| InfoGraph | Attributed | Contrastive/C-G | None | SP Estimator | URL | 2019 |
| SUGAR | Attributed | Contrastive/C-G | BFS Sampling | JS Estimator | JL | 2021 |
| BiGI | Heterogeneous | Contrastive/C-G | Edge Perturbation
Ego-nets Sampling | JS Estimator | JL | 2021 |
| HTC | Attributed | Contrastive/C-G | Attribute Shuffling | SP Estimator
DV Estimator | URL | 2021 |
| Node Property Prediction | Attributed | Predictive/Node Property | None | MAE | P\&F/JL | 2020 |
| S2GRL | Attributed | Predictive/Context-based | None | Cross Entropy | URL | 2020 |
| PairwiseDistance | Attributed | Predictive/Context-based | None | Cross Entropy | P\&F/JL | 2020 |
| PairwiseAttrSim | Attributed | Predictive/Context-based | None | MAE | P\&F/JL | 2020 |
| Distance2Cluster | Attributed | Predictive/Context-based | None | MAE | P\&F/JL | 2020 |
| EdgeMask | Attributed | Predictive/Context-based | None | Cross Entropy | P\&F/JL | 2020 |
| TopoTER | Attributed | Predictive/Context-based | Edge Perturbation | Cross Entropy | URL | 2021 |
| Centrality Score Ranking | Attributed | Predictive/Context-based | None | Cross Entropy | P\&F | 2019 |
| Meta-path prediction | Heterogeneous | Predictive/Context-based | None | Cross Entropy | JL | 2020 |
| SLiCE | Heterogeneous | Predictive/Context-based | None | Cross Entropy | P\&F | 2020 |
| Distance2Labeled | Attributed | Predictive/Context-based | None | MAE | P\&F/JL | 2020 |
| ContextLabel | Attributed | Predictive/Context-based | None | MAE | P\&F/JL | 2020 |
| HCM | Attributed | Predictive/Context-based | Edge Perturbation | Bayesian Inference | URL | 2021 |
| Contextual Molecular
Property Prediction | Attributed | Predictive/Domain-based | None | Cross Entropy | P\&F | 2020 |
| Graph-level Motif Prediction | Attributed | Predictive/Domain-based | None | Cross Entropy | P\&F | 2020 |
| Multi-stage Self-training | Attributed | Predictive/Self-training | None | None | JL | 2018 |
| Node Clustering | Attributed | Predictive/Self-training | None | Clustering | P\&F/JL | 2020 |
| Graph Partitioning | Attributed | Predictive/Self-training | None | Graph Partitioning | P\&F/JL | 2020 |
| CAGAN | Attributed | Predictive/Self-training | None | Clustering | URL | 2020 |
| M3S | Attributed | Predictive/Self-training | None | Clustering | JL | 2020 |
| Cluster Preserving | Attributed | Predictive/Self-training | None | Cross Entropy | P\&F | 2019 |

## A Summary of Implementation Details

About Task Level, Evaluation Metric, and Evaluation Datasets.

| Methods | Task Level | Evaluation Metric | Dataset |
| :------------------------------------------- | :-------------: | :----------------------------------------------------------- | :----------------------------------------------------------: |
| CDNMF | Node | Node Clustering (Acc, NMI) | Cora, Citeseer, Pubmed |
| Graph Completion | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed |
| Node Attribute Masking | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Reddit |
| Edge Attribute Masking | Graph | Graph Classification (ROC-AUC) | MUTAG, PTC, PPI, BBBP, Tox21, ToxCast, ClinTox, MUV, HIV, SIDER, BACE |
| Node Attribute and
Embedding Denoising | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed |
| Adjacency Matrix
Reconstruction | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed |
| Graph Bert | Node | Node Classification (Acc)
Node Clustering (NMI) | Cora, Citeseer, Pubmed |
| Pretrain-Recsys | Node/Link | - | ML-1M, MOOCs and Last-FM |
| GPT-GNN | Node/Link | Node Classification (F1-score)
Link Prediction (ROC-AUC) | OAG, Amazon, Reddit |
| GraphCL | Graph | Graph Classification (Acc, ROC-AUC) | NCI1, PROTEINS, D\&D, COLLAB, RDT-B, RDT-M5K, GITHUB, MNIST, CIFAR10, MUTAG, IMDB-B, BBBP, Tox21, ToxCast, SIDER, ClinTox, MUV, HIV, BACE, PPI |
| IGSD | Graph | Graph Classification (Acc) | MUTAG, PTC\_MR, NCI1, IMDB-B, QM9, COLLAB, IMDB-M |
| DACL | Graph | Graph Classification (Acc) | MUTAG, PTC\_MR, IMDB-B, IMDB-M, RDT-B, RDT-M5K |
| LCC | Graph | Graph Classification (Acc) | IMDB-B, IMDB-M, COLLAB, MUTAG, PROTEINS, PTC, NCI1, D\&D |
| CCGL | Graph | Cascade Graph Prediction (MSLE) | Weibo, Twitter, ACM, APS, DBLP |
| CSSL | Graph | Graph Classification (Acc) | PROTEINS, D\&D, NCI1, NCI109, Mutagenicity |
| GCC | Node/Graph | Node Classification (Acc)
Graph Classification (Acc) | US-Airport, H-index, COLLAB, IMDB-B, IMDB-M, RDT-B, RDT-M5K |
| GRACE | Node | Node Classification (Acc, Micro-F1) | Cora, Citeseer, Pubmed, DBLP, Reddit, PPI |
| GCA | Node | Node Classification (Acc) | Wiki-CS, Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-Physics |
| GROC | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Amazon-Photo, Wiki-CS |
| SEPT | Node/Link | - | Last-FM, Douban, Yelp |
| STDGI | Node | Node Regression (MAE, RMSE, MAPE) | METR-LA |
| GMI | Node/Link | Node Classification (Acc, Micro-F1)
Link Prediction (ROC-AUC) | Cora, Citeseer, PubMed, Reddit, PPI, BlogCatalog, Flickr |
| KS2L | Node/Link | Node Classification (Acc)
Link Prediction (ROC-AUC) | Cora, Citeseer, Pubmed, Amazon-Computers, Amazon-Photo, Coauthor-CS |
| CG3 | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Amazon-Computers, Amazon-Photo, Coauthor-CS |
| BGRL | Node | Node Classification (Acc, Micro-F1) | Wiki-CS, Amazon-Computers, Amazon-Photo, PPI, Coauthor-CS, Coauthor-Physics, ogbn-arxiv |
| SelfGNN | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-Physics |
| HeCo | Node | Node Classification
(ROC-AUC, Micro-F1, Macro-F1)
Node Clustering (NMI, ARI) | ACM, DBLP, Freebase, AMiner |
| PT-DGNN | Link | Link Prediction (ROC-AUC) | HepPh, Math Overflow, Super User |
| COAD | Node/Link | Node Clustering
(Precision, Recall, F1-score)
Link Prediction (HitRatio@K, MRR) | AMiner, News, LinkedIn |
| Contrast-Reg | Node/Link | Node Classification (Acc)
Node Clustering
(NMI, Acc, Macro-F1)
Link Prediction (ROC-AUC) | Cora, Citeseer, Pubmed, Reddit, ogbn-arxiv, Wikipedia, ogbn-products, Amazo-Computers, Amazo-Photo |
| DGI | Node | Node Classification (Acc, Micro-F1) | Cora, Citeseer, Pubmed, Reddit, PPI |
| HDMI | Node | Node Classification
(Micro-F1, Macro-F1)
Node Clustering (NMI) | ACM, IMDB, DBLP, Amazon |
| DMGI | Node | Node Clustering (NMI)
Node Classification (Acc) | ACM, IMDB, DBLP, Amazon |
| MVGRL | Node/Graph | Node Classification (Acc)
Node Clustering (NMI, ARI)
Graph Classification (Acc) | Cora, Citeseer, Pubmed, MUTAG, PTC\_MR, IMDB-B, IMDB-M, RDT-B |
| HDGI | Node | Node Classification
(Micro-F1, Macro-F1)
Node Clustering (NMI, ARI) | ACM, DBLP, IMDB |
| Subg-Con | Node | Node Classification (Acc, Micro-F1) | Cora, Citeseer, Pubmed, PPI, Flickr, Reddit |
| Cotext Prediction | Graph | Graph Classification (ROC-AUC) | MUTAG, PTC, PPI, BBBP, Tox21, ToxCast, ClinTox, MUV, HIV, SIDER, BACE |
| GIC | Node/Link | Node Classification (Acc)
Node Clustering (Acc, NMI, ARI)
Link Prediction (ROC-AUC, ROC-AP) | Cora, Citeseer, Pubmed, Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-Physics |
| GraphLoG | Graph | Graph Classification (ROC-AUC) | BBBP, Tox21, ToxCast, ClinTox, MUV, HIV, SIDER, BACE |
| MHCN | Node/Link | - | Last-FM, Douban, Yelp |
| EGI | Node/Link | Node Classification (Acc)
Link Prediction (ROC-AUC, MRR) | YAGO, Airport |
| MICRO-Graph | Graph | Graph Classification (ROC-AUC) | BBBP, Tox21, ToxCast, ClinTox, HIV, SIDER, BACE |
| InfoGraph | Graph | Graph Classification (Acc) | MUTAG, PTC\_MR, RDT-B, RDT-M5K, IMDB-B, QM9, IMDB-M |
| SUGAR | Graph | Graph Classification (Acc) | MUTAG, PTC, PROTEINS, D\&D, NCI1, NCI109 |
| BiGI | Link | Link Prediction (AUC-ROC, AUC-PR) | DBLP, ML-100K, ML-1M, Wikipedia |
| HTC | Graph | Graph Classification (Acc) | MUTAG, PTC\_MR, IMDB-B, IMDB-M, RDT-B, QM9, RDT-M5K |
| Node Property Prediction | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Reddit |
| S2GRL | Node/Link | Node Classification (Acc, Micro-F1)
Node Clustering (NMI)
Link Prediction (ROC-AUC) | Cora, Citeseer, Pubmed, PPI, Flickr, BlogCatalog, Reddit |
| PairwiseDistance | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Reddit |
| PairwiseAttrSim | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Reddit |
| Distance2Cluster | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Reddit |
| EdgeMask | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Reddit |
| TopoTER | Node/Graph | Node Classification (Acc)
Graph Classification (Acc) | Cora, Citeseer, Pubmed, MUTAG, PTC-MR, RDT-B, RDT-M5K, IMDB-B, IMDB-M |
| Centrality Score Ranking | Node/Link/Graph | Node Classification (Micro-F1)
Link Prediction (Micro-F1)
Graph Classification (Micro-F1) | Cora, Pubmed, ML-100K, ML-1M, IMDB-M, IMDB-B |
| Meta-path prediction | Node/Link | Node Classification (F1-score)
Link Prediction (ROC-AUC) | ACM, IMDB, Last-FM, Book-Crossing |
| SLiCE | Link | Link Prediction (ROC-AUC, Micro-F1) | Amazon, DBLP, Freebase, Twitter, Healthcare |
| Distance2Labeled | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Reddit |
| ContextLabel | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed, Reddit |
| HCM | Node | Node Classification (ROC-AUC) | ACM, Amazon, Enron, BlogCatalog, Flickr |
| Contextual Molecular
Property Prediction | Graph | Graph Classification (Acc)
Graph Regression (MAE) | BBBP, SIDER, ClinTox, BACE, Tox21, ToxCast, ESOL, FreeSolv, Lipo, QM7, QM8 |
| Graph-level Motif Prediction | Graph | Graph Classification (Acc)
Graph Regression (MAE) | BBBP, SIDER, ClinTox, BACE, Tox21, ToxCast, ESOL, FreeSolv, Lipo, QM7, QM8 |
| Multi-stage Self-training | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed |
| Node Clustering | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed |
| Graph Partitioning | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed |
| CAGAN | Node | Node Classfication
(Micro-F1, Macro-F1)
Node Clustering
(Micro-F1, Macro-F1, NMI) | Cora, Citeseer, Pubmed |
| M3S | Node | Node Classification (Acc) | Cora, Citeseer, Pubmed |
| Cluster Preserving | Node/Link/Graph | Node Classification (Micro-F1)
Link Prediction (Micro-F1)
Graph Classification (Micro-F1) | Cora, Pubmed, ML-100K, ML-1M, IMDB-M, IMDB-B |

## A Summary of Common Graph Datasets

About category, graph number, node number per graph, edge number per graph, dimensionality of node attributes, class number, and citation papers.

| Dataset | Category | \#Graph | \#Node (Avg.) | \#Edge (Avg.) | \#Feature | \#Class |
| :--------------: | :---------------: | :-----: | :-----------: | :-----------: | :-------: | :-----: |
| Cora | Citation Network | 1 | 2708 | 5429 | 1433 | 7 |
| Citeseer | Citation Network | 1 | 3327 | 4732 | 3703 | 6 |
| Pubmed | Citation Network | 1 | 19717 | 44338 | 500 | 3 |
| Wiki-CS | Citation Network | 1 | 11701 | 216123 | 300 | 10 |
| Coauthor-CS | Citation Network | 1 | 18333 | 81894 | 6805 | 15 |
| Coauthor-Physics | Citation Network | 1 | 34493 | 247962 | 8415 | 5 |
| DBLP (v12) | Citation Network | 1 | 4894081 | 45564149 | - | - |
| ogbn-arxiv | Citation Network | 1 | 169343 | 1166243 | 128 | 40 |
| Reddit | Social Network | 1 | 232965 | 11606919 | 602 | 41 |
| BlogCatalog | Social Network | 1 | 5196 | 171743 | 8189 | 6 |
| Flickr | Social Network | 1 | 7575 | 239738 | 12047 | 9 |
| COLLAB | Social Networks | 5000 | 74.49 | 2457.78 | - | 2 |
| RDT-B | Social Networks | 2000 | 429.63 | 497.75 | - | 2 |
| RDT-M5K | Social Networks | 4999 | 508.52 | 594.87 | - | 5 |
| IMDB-B | Social Networks | 1000 | 19.77 | 96.53 | - | 2 |
| IMDB-M | Social Networks | 1500 | 13.00 | 65.94 | - | 3 |
| ML-100K | Social Networks | 1 | 2625 | 100000 | - | 5 |
| ML-1M | Social Networks | 1 | 9940 | 1000209 | - | 5 |
| PPI | Protein Networks | 24 | 56944 | 818716 | 50 | 121 |
| D\&D | Protein Networks | 1178 | 284.32 | 715.65 | 82 | 2 |
| PROTEINS | Protein Networks | 1113 | 39.06 | 72.81 | 4 | 2 |
| NCI1 | Molecule Graphs | 4110 | 29.87 | 32.30 | 37 | 2 |
| MUTAG | Molecule Graphs | 188 | 17.93 | 19.79 | 7 | 2 |
| QM9 (QM7, QM8) | Molecule Graphs | 133885 | - | - | - | - |
| BBBP | Molecule Graphs | 2039 | 24.05 | 25.94 | - | 2 |
| Tox21 | Molecule Graphs | 7831 | 18.51 | 25.94 | - | 12 |
| ToxCast | Molecule Graphs | 8575 | 18.78 | 19.26 | - | 167 |
| ClinTox | Molecule Graphs | 1478 | 26.13 | 27.86 | - | 2 |
| MUV | Molecule Graphs | 93087 | 24.23 | 26.28 | - | 17 |
| HIV | Molecule Graphs | 41127 | 25.53 | 27.48 | - | 2 |
| SIDER | Molecule Graphs | 1427 | 33.64 | 35.36 | - | 27 |
| BACE | Molecule Graphs | 1513 | 34.12 | 36.89 | - | 2 |
| PTC | Molecule Graphs | 344 | 14.29 | 14.69 | 19 | 2 |
| NCI109 | Molecule Graphs | 4127 | 29.68 | 32.13 | - | 2 |
| Mutagenicity | Molecule Graphs | 4337 | 30.32 | 30.77 | - | 2 |
| MNIST | Others (Image) | - | 70000 | - | 784 | 10 |
| CIFAR10 | Others (Image) | - | 60000 | - | 1024 | 10 |
| METR-LA | Others (Traffic) | 1 | 207 | 1515 | 2 | - |
| Amazon-Computers | Others (Purchase) | 1 | 13752 | 245861 | 767 | 10 |
| Amazon-Photo | Others (Purchase) | 1 | 7650 | 119081 | 745 | 8 |
| ogbn-products | Others (Purchase) | 1 | 2449029 | 61859140 | 100 | 47 |

## A Summary of Open-source Codes

| Methods | Github |
| :--------------------------------------- | :----------------------------------------------------------- |
| CDNMF | https://github.com/6lyc/CDNMF |
| Graph Completion | https://github.com/Shen-Lab/SS-GCNs |
| Node Attribute Masking | https://github.com/ChandlerBang/SelfTask-GNN |
| Edge Attribute Masking | http://snap.stanford.edu/gnn-pretrain |
| Attribute and Embedding Denoising | N.A. |
| Adjacency Matrix Reconstruction | N.A. |
| Graph Bert | https://github.com/anonymous-sourcecode/Graph-Bert |
| Pretrain-Recsys | https://github.com/jerryhao66/Pretrain-Recsys |
| SLAPS | https://github.com/BorealisAI/SLAPS-GNN |
| G-BERT | https://github.com/jshang123/G-Bert |
| GPT-GNN | https://github.com/acbull/GPT-GNN |
| GraphCL | https://github.com/Shen-Lab/GraphCL |
| IGSD | N.A. |
| DACL | N.A. |
| LCC | https://github.com/YuxiangRen |
| CCGL | https://github.com/Xovee/ccgl |
| CSSL | N.A. |
| GCC | https://github.com/THUDM/GCC |
| GRACE | https://github.com/CRIPAC-DIG/GRACE |
| GCA | https://github.com/CRIPAC-DIG/GCA |
| GROC | N.A. |
| SEPT | https://github.com/Coder-Yu/QRec |
| STDGI | N.A. |
| GMI | https://github.com/zpeng27/GMI |
| KS2L | N.A. |
| CG3 | N.A. |
| BGRL | N.A. |
| SelfGNN | https://github.com/zekarias-tilahun/SelfGNN |
| HeCo | https://github.com/liun-online/HeCo |
| PT-DGNN | https://github.com/Mobzhang/PT-DGNN |
| COAD | https://github.com/allanchen95/Expert-Linking |
| Contrast-Reg | N.A. |
| C-SWM | https://github.com/tkipf/c-swm |
| DGI | https://github.com/PetarV-/DGI |
| HDMI | N.A. |
| DMGI | https://github.com/pcy1302/DMGI |
| MVGRL | https://github.com/kavehhassani/mvgrl |
| HDGI | https://github.com/YuxiangRen/Heterogeneous-Deep-Graph-Infomax |
| Subg-Con | https://github.com/yzjiao/Subg-Con |
| Cotext Prediction | http://snap.stanford.edu/gnn-pretrain |
| GIC | https://github.com/cmavro/Graph-InfoClust-GIC |
| GraphLoG | https://openreview.net/forum?id=DAaaaqPv9-q |
| MHCN | https://github.com/Coder-Yu/RecQ |
| EGI | https://openreview.net/forum?id=J_pvI6ap5Mn |
| MICRO-Graph | https://drive.google.com/file/d/1b751rpnV-SDmUJvKZZI-AvpfEa9eHxo9/ |
| InfoGraph | https://github.com/fanyun-sun/InfoGraph |
| SUGAR | https://github.com/RingBDStack/SUGAR |
| BiGI | https://github.com/clhchtcjj/BiNE |
| HTC | N.A. |
| DITNET | https://github.com/FangpingWan/NeoDTI |
| Node Property Prediction | https://github.com/ChandlerBang/SelfTask-GNN |
| S2GRL | N.A. |
| PairwiseDistance | https://github.com/ChandlerBang/SelfTask-GNN |
| PairwiseAttrSim | https://github.com/ChandlerBang/SelfTask-GNN |
| Distance2Cluster | https://github.com/ChandlerBang/SelfTask-GNN |
| EdgeMask | https://github.com/ChandlerBang/SelfTask-GNN |
| TopoTER | N.A. |
| Centrality Score Ranking | N.A. |
| Meta-path prediction | https://github.com/mlvlab/SELAR |
| SLiCE | https://github.com/pnnl/SLICE |
| Distance2Labeled | https://github.com/ChandlerBang/SelfTask-GNN |
| ContextLabel | https://github.com/ChandlerBang/SelfTask-GNN |
| HCM | N.A. |
| Contextual Molecular Property Prediction | https://github.com/tencent-ailab/grover |
| Graph-level Motif Prediction | https://github.com/tencent-ailab/grover |
| DrRepair | https://github.com/michiyasunaga/DrRepair |
| Multi-stage Self-training | https://github.com/Davidham3/deeper_insights_into_GCNs |
| Node Clustering | https://github.com/Shen-Lab/SS-GCNs |
| Graph Partitioning | https://github.com/Shen-Lab/SS-GCNs |
| CAGAN | N.A. |
| M3S | https://github.com/datake/M3S |
| Cluster Preserving | N.A. |
| SEF | https://github.com/nealgravindra/self-supervsed_edge_feats |

## Contribute

If you would like to help contribute this list, please feel free to contact me or add [pull request](https://github.com/LirongWu/awesome-graph-self-supervised-learning/pulls) with the following Markdown format:

```markdown
- Paper Name.
- Author List. *Conference Year*. [[pdf]](link) [[code]](link)
```

This is a Github Summary of our [Survey](https://arxiv.org/abs/2105.07342). If you find this file useful in your research, please consider citing:

```
@article{wu2021self,
title={Self-supervised Learning on Graphs: Contrastive, Generative, or Predictive},
author={Wu, Lirong and Lin, Haitao and Tan, Cheng and Gao, Zhangyang and Li, Stan Z},
journal={IEEE Transactions on Knowledge and Data Engineering},
year={2021},
publisher={IEEE}
}
```

## Feedback
If you have any issue about this work, please feel free to contact me by email:
* Lirong Wu: [email protected]
* Haitao Lin: [email protected]