Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/amusi/awesome-lane-detection
A paper list of lane detection.
https://github.com/amusi/awesome-lane-detection
List: awesome-lane-detection
lane-detection lane-lines-detection
Last synced: about 1 month ago
JSON representation
A paper list of lane detection.
- Host: GitHub
- URL: https://github.com/amusi/awesome-lane-detection
- Owner: amusi
- Created: 2018-12-26T08:08:05.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2023-09-20T07:32:51.000Z (over 1 year ago)
- Last Synced: 2024-05-21T00:31:32.655Z (8 months ago)
- Topics: lane-detection, lane-lines-detection
- Homepage:
- Size: 109 KB
- Stars: 2,849
- Watchers: 138
- Forks: 773
- Open Issues: 17
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-artificial-intelligence-research - Lane Detection
- awesomeai - Lane Detection
- awesome-ai-awesomeness - Lane Detection
- awesome-ai-awesomeness - Lane Detection
- my-awesome - amusi/awesome-lane-detection - detection,lane-lines-detection pushed_at:2024-08 star:3.0k fork:0.8k A paper list of lane detection. (Others)
- awesome-ai-list-guide - awesome-lane-detection
- ultimate-awesome - awesome-lane-detection - A paper list of lane detection. (Other Lists / Monkey C Lists)
README
# awesome-lane-detection
Lane Detection![](img/Lane_Detection_Demo.jpg)
[Paper](#Paper)
- [2023](#2023)
- [2022](#2022)
- [2021](#2021)
- [2020](#2020)
- [2019](#2019)
- [2018](#2018)
- [2017](#2017)[Code](#Code)
[Blog/Tutorial](#Blog/Tutorial)
[Datasets](#Datasets)
# Paper
## 2023
[Decoupling the Curve Modeling and Pavement Regression for Lane Detection](https://arxiv.org/abs/2309.10533)
[Recursive Video Lane Detection](https://arxiv.org/abs/2308.11106) [github](https://github.com/dongkwonjin/RVLD) ICCV 2023
[LATR: 3D Lane Detection from Monocular Images with Transformer](https://arxiv.org/abs/2308.04583) [github](https://github.com/JMoonr/LATR) ICCV 2023
[GroupLane: End-to-End 3D Lane Detection with Channel-wise Grouping](https://arxiv.org/abs/2307.09472)
[An Efficient Transformer for Simultaneous Learning of BEV and Lane Representations in 3D Lane Detection](https://arxiv.org/abs/2306.04927)
[BEV-LaneDet: a Simple and Effective 3D Lane Detection Baseline](https://arxiv.org/abs/2210.06006) [github](https://github.com/gigo-team/bev_lane_det) CVPR 2023
[Anchor3DLane: Learning to Regress 3D Anchors for Monocular 3D Lane Detection](https://arxiv.org/abs/2301.02371) [github](https://github.com/tusen-ai/Anchor3DLane) CVPR 2023
[End to End Lane detection with One-to-Several Transformer](https://arxiv.org/abs/2305.00675) [github](https://github.com/zkyseu/O2SFormer)
## 2022
[Repainting and Imitating Learning for Lane Detection](https://arxiv.org/abs/2210.05097)
[WS-3D-Lane: Weakly Supervised 3D Lane Detection With 2D Lane Labels](https://arxiv.org/abs/2209.11523)
[CurveFormer: 3D Lane Detection by Curve Propagation with Curve Queries and Attention](https://arxiv.org/abs/2209.07989)
[PriorLane: A Prior Knowledge Enhanced Lane Detection Approach Based on Transformer]( https://arxiv.org/abs/2209.06994 ) [github](https://github.com/vincentqqb/PriorLane)
[M^2-3DLaneNet: Multi-Modal 3D Lane Detection](https://arxiv.org/abs/2209.05996)
[RCLane: Relay Chain Prediction for Lane Detection](https://arxiv.org/abs/2207.09399) ECCV 2022
[PersFormer: 3D Lane Detection via Perspective Transformer and the OpenLane Benchmark](https://arxiv.org/abs/2203.11089) [github](https://github.com/OpenPerceptionX/PersFormer_3DLane) [OpenLane Dataset](https://github.com/OpenPerceptionX/OpenLane) ECCV 2022 Oral
[Reconstruct from Top View: A 3D Lane Detection Approach based on Geometry Structure Prior](https://arxiv.org/abs/2206.10098)
[Multi-level Domain Adaptation for Lane Detection](https://arxiv.org/abs/2206.10692)
[Ultra Fast Deep Lane Detection with Hybrid Anchor Driven Ordinal Classification](https://arxiv.org/abs/2206.07389) [github](https://github.com/cfzd/Ultra-Fast-Lane-Detection-v2) TPAMI 2022
[ONCE-3DLanes: Building Monocular 3D Lane Detection](https://arxiv.org/abs/2205.00301) [Homepage](https://once-3dlanes.github.io/) [github](https://github.com/once-3dlanes/once_3dlanes_benchmark) [Dataset](https://once-3dlanes.github.io/3dlanes/) CVPR 2022
[A Keypoint-based Global Association Network for Lane Detection](https://arxiv.org/abs/2204.07335) [github](https://github.com/Wolfwjs/GANet) CVPR 2022
[Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes](https://arxiv.org/abs/2203.15302) [github](https://github.com/dongkwonjin/Eigenlanes) [SDLane Dataset](https://www.42dot.ai/akit/dataset/) CVPR 2022
[Towards Driving-Oriented Metric for Lane Detection Models](https://arxiv.org/abs/2203.16851) [Comma2k19 LD Dataset](https://www.kaggle.com/datasets/tkm2261/comma2k19-ld) CVPR 2022
[CLRNet: Cross Layer Refinement Network for Lane Detection](https://arxiv.org/abs/2203.10350) CVPR 2022
[Rethinking Efficient Lane Detection via Curve Modeling](https://arxiv.org/abs/2203.02431) [github](https://github.com/voldemortX/pytorch-auto-drive) CVPR 2022
[Lane detection with Position Embedding](https://arxiv.org/abs/2203.12301)
[AtrousFormer:Lane Detection with Versatile AtrousFormer and Local Semantic Guidance](https://arxiv.org/abs/2203.04067)
[Laneformer: Object-Aware Row-Column Transformers for Lane Detection](https://www.aaai.org/AAAI22Papers/AAAI-6756.HanJ.pdf) AAAI 2022
[RONELDv2: A faster, improved lane tracking method](https://arxiv.org/abs/2202.13137)
## 2021
[SwiftLane: Towards Fast and Efficient Lane Detection](https://arxiv.org/abs/2110.11779) ICMLA 2021
[A Hybrid Spatial-temporal Sequence-to-one Neural Network Model for Lane Detection](https://arxiv.org/abs/2110.04079)
[YOLOP: You Only Look Once for Panoptic Driving Perception](https://arxiv.org/abs/2108.11250) [github](https://github.com/hustvl/YOLOP)
[VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection](https://arxiv.org/abs/2108.08482) [github](https://github.com/yujun0-0/MMA-Net) [dataset](https://github.com/yujun0-0/MMA-Net) ICCV 2021
[ContinuityLearner: Geometric Continuity Feature Learning for Lane Segmentation](https://arxiv.org/abs/2108.03507)
[On Robustness of Lane Detection Models to Physical-World Adversarial Attacks in Autonomous Driving](https://arxiv.org/abs/2107.02488)
[Structure Guided Lane Detection](https://arxiv.org/abs/2105.05403) IJCAI 2021
[CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution](https://arxiv.org/abs/2105.05003)
[Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection](https://arxiv.org/abs/2010.12035) [github](https://github.com/lucastabelini/LaneATT) CVPR 2021
[YOLinO: Generic Single Shot Polyline Detection in Real Time](https://arxiv.org/abs/2103.14420)
[LaneAF: Robust Multi-Lane Detection with Affinity Fields](https://arxiv.org/abs/2103.12040) [github](https://github.com/sel118/LaneAF)
[Robust Lane Detection via Expanded Self Attention](https://arxiv.org/abs/2102.07037)
[End-to-End Deep Learning of Lane Detection and Path Prediction for Real-Time Autonomous Driving](https://arxiv.org/abs/2102.04738)
## 2020
[End-to-end Lane Shape Prediction with Transformers](https://arxiv.org/abs/2011.04233) [github](https://github.com/liuruijin17/LSTR) WACV 2021
[3D-LaneNet+: Anchor Free Lane Detection using a Semi-Local Representation](https://arxiv.org/abs/2011.01535)
[Keep your Eyes on the Lane: Attention-guided Lane Detection](https://arxiv.org/abs/2010.12035) [github](https://github.com/lucastabelini/LaneATT)
[RONELD: Robust Neural Network Output Enhancement for Active Lane Detection](https://arxiv.org/abs/2010.09548) [github](https://github.com/czming/RONELD-Lane-Detection) ICPR 2020
[RESA: Recurrent Feature-Shift Aggregator for Lane Detection](https://arxiv.org/abs/2008.13719) [github](https://github.com/ZJULearning/resa) AAAI 2021
[CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending](https://arxiv.org/abs/2007.12147) ECCV 2020 [Datasets](https://github.com/xbjxh/curvelanes)
[Towards Lightweight Lane Detection by Optimizing Spatial Embedding](https://arxiv.org/abs/2008.08311) ECCV 2020 Workshop
[Structure-Aware Network for Lane Marker Extraction with Dynamic Vision Sensor](https://arxiv.org/abs/2008.06204)
[Lane Detection Model Based on Spatio-Temporal Network with Double ConvGRUs](https://arxiv.org/abs/2008.03922)
[Heatmap-based Vanishing Point boosts Lane Detection](https://arxiv.org/abs/2007.15602)
[Synthetic-to-Real Domain Adaptation for Lane Detection](https://arxiv.org/abs/2007.04023)
[E2E-LMD: End-to-End Lane Marker Detection via Row-wise Classification](https://arxiv.org/abs/2005.08630)
[SUPER: A Novel Lane Detection System](https://arxiv.org/abs/2005.07277)
[Ultra Fast Structure-aware Deep Lane Detection](https://arxiv.org/abs/2004.11757) [github](https://github.com/cfzd/Ultra-Fast-Lane-Detection) ECCV 2020
[PolyLaneNet: Lane Estimation via Deep Polynomial Regression](https://github.com/lucastabelini/PolyLaneNet) [github](https://github.com/lucastabelini/PolyLaneNet)
[Inter-Region Affinity Distillation for Road Marking Segmentation](https://arxiv.org/abs/2004.05304) [github](https://github.com/cardwing/Codes-for-IntRA-KD) CVPR 2020
[Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection](https://arxiv.org/abs/2003.10656) [github](https://github.com/yuliangguo/Pytorch_Generalized_3D_Lane_Detection) [Datasets](https://github.com/yuliangguo/3D_Lane_Synthetic_Dataset) ECCV 2020
[Detecting Lane and Road Markings at A Distance with Perspective Transformer Layers](https://arxiv.org/abs/2003.08550)
[Semi-Local 3D Lane Detection and Uncertainty Estimation](https://arxiv.org/abs/2003.05257)
[FusionLane: Multi-Sensor Fusion for Lane Marking Semantic Segmentation Using Deep Neural Networks](https://arxiv.org/abs/2003.04404) [github](https://github.com/rolandying/FusionLane)
[PINet:Key Points Estimation and Point Instance Segmentation Approach for Lane Detection](https://arxiv.org/abs/2002.06604) [github](https://github.com/koyeongmin/PINet)
[Better-CycleGAN + ERFNet: Lane Detection in Low-light Conditions Using an Efficient Data Enhancement : Light Conditions Style Transfer](https://arxiv.org/abs/2002.01177) submitted to IV 2020
[Multi-lane Detection Using Instance Segmentation and Attentive Voting](https://arxiv.org/abs/2001.00236) ICCAS 2019
## 2019
[Dynamic Approach for Lane Detection using Google Street View and CNN]() IEEE TENCON 2019
[Learning Lightweight Lane Detection CNNs by Self Attention Distillation](https://arxiv.org/abs/1908.00821) [github](https://github.com/cardwing/Codes-for-Lane-Detection) ICCV 2019
[Multi-Class Lane Semantic Segmentation using Efficient Convolutional Networks](https://arxiv.org/abs/1907.09438) MMSP 2019
[Lane Detection and Classification using Cascaded CNNs](https://arxiv.org/abs/1907.01294) Eurocast 2019
[Driver Behavior Analysis Using Lane Departure Detection Under Challenging Conditions](https://arxiv.org/abs/1906.00093)
[FastDraw: Addressing the Long Tail of Lane Detection by Adapting a Sequential Prediction Network](https://arxiv.org/abs/1905.04354) CVPR 2019
[Agnostic Lane Detection](https://arxiv.org/abs/1905.03704) [github](https://github.com/cardwing/Codes-for-Lane-Detection)
[Deep Multi-Sensor Lane Detection](https://arxiv.org/abs/1905.01555) IROS2018
[Enhanced free space detection in multiple lanes based on single CNN with scene identification](https://arxiv.org/abs/1905.00941) IV2019 [github](https://github.com/fabvio/ld-lsi/)
[Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks](https://arxiv.org/abs/1903.02193)
[End-to-end Lane Detection through Differentiable Least-Squares Fitting](https://arxiv.org/abs/1902.00293) [github](https://github.com/wvangansbeke/LaneDetection_End2End)
## 2018
[End to End Video Segmentation for Driving : Lane Detection For Autonomous Car](https://arxiv.org/abs/1812.05914)
[3D-LaneNet: end-to-end 3D multiple lane detection](https://arxiv.org/abs/1811.10203) ICCV 2019
[Efficient Road Lane Marking Detection with Deep Learning](https://arxiv.org/abs/1809.03994) DSP 2018
[Multiple Lane Detection Algorithm Based on Optimised Dense Disparity Map Estimation](https://arxiv.org/abs/1808.09128) IST 2018
[LineNet: a Zoomable CNN for Crowdsourced High Definition Maps Modeling in Urban Environments](https://arxiv.org/abs/1807.05696)
[Real-time stereo vision-based lane detection system](https://arxiv.org/abs/1807.02752)
[LaneNet: Real-Time Lane Detection Networks for Autonomous Driving](https://arxiv.org/abs/1807.01726)
[EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection](https://arxiv.org/abs/1806.05525)
[Real-time Lane Marker Detection Using Template Matching with RGB-D Camera](https://arxiv.org/abs/1806.01621)
[Towards End-to-End Lane Detection: an Instance Segmentation Approach](https://arxiv.org/abs/1802.05591) [论文解读](https://mp.weixin.qq.com/s/sGbSiCHpKjqKe9FP1ykjGw) [github](https://github.com/MaybeShewill-CV/lanenet-lane-detection)
[Lane Detection and Classification for Forward Collision Warning System Based on Stereo Vision](https://ieeexplore.ieee.org/document/8353455/)
[Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision](https://ieeexplore.ieee.org/document/8332138/)
[(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding](https://arxiv.org/abs/1712.06080) AAAI 2018 [CSDN Translator](https://blog.csdn.net/u011974639/article/details/79580798?from=timeline#10006-weixin-1-52626-6b3bffd01fdde4900130bc5a2751b6d1)
[Lane Detection Based on Inverse Perspective Transformation and Kalman Filter](http://itiis.org/digital-library/manuscript/file/1921/TIIS+Vol+12,+No+2-6.pdf)
# 2017
[A review of recent advances in lane detection and departure warning system](https://www.sciencedirect.com/science/article/pii/S0031320317303266)
[Deep Learning Lane Marker Segmentation From Automatically Generated Labels](https://ieeexplore.ieee.org/document/7989163/) [Youtube](https://www.youtube.com/watch?v=AH01wpqqaeA)
[VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition](http://openaccess.thecvf.com/content_iccv_2017/html/Lee_VPGNet_Vanishing_Point_ICCV_2017_paper.html) ICCV 2017 [github](https://github.com/SeokjuLee/VPGNet)
# Code
https://github.com/voldemortX/pytorch-auto-drive
[Lane Detection(Paper with Code)](https://paperswithcode.com/task/lane-detection)
https://github.com/wvangansbeke/LaneDetection_End2End
:Lane Detection with Deep Learning
# Blog/Tutorial
[Lane Detection with Deep Learning (Part 1)](https://towardsdatascience.com/lane-detection-with-deep-learning-part-1-9e096f3320b7)
[Simple Lane Detection with OpenCV](https://medium.com/@mrhwick/simple-lane-detection-with-opencv-bfeb6ae54ec0)
[Finding Lane Lines — Simple Pipeline For Lane Detection](https://towardsdatascience.com/finding-lane-lines-simple-pipeline-for-lane-detection-d02b62e7572b)
[Building a lane detection system using Python 3 and OpenCV](https://medium.com/@galen.ballew/opencv-lanedetection-419361364fc0)
[Tutorial: Build a lane detector](https://towardsdatascience.com/tutorial-build-a-lane-detector-679fd8953132)
[Online course: Algorithms for Automated Driving](https://thomasfermi.github.io/Algorithms-for-Automated-Driving/Introduction/intro.html)
# Datasets
- [TuSimple](https://github.com/TuSimple/tusimple-benchmark)
- [CULane](https://xingangpan.github.io/projects/CULane.html)
- [BDD100K](http://bdd-data.berkeley.edu/)
- [Caltech](http://www.mohamedaly.info/datasets/caltech-lanes)
- [VPGNet](https://github.com/SeokjuLee/VPGNet#vpgnet-dataset)
- [3D Lane Synthetic Dataset](https://github.com/yuliangguo/3D_Lane_Synthetic_Dataset)
- [DIML](https://diml.yonsei.ac.kr/dataset/)
- [Jiqing Expressway](https://github.com/vonsj0210/Multi-Lane-Detection-Dataset-with-Ground-Truth)
- [A Dataset for Lane Instance Segmentation in Urban Environments](https://arxiv.org/abs/1807.01347)
- [LLAMAS:The Lane Marker Dataset](https://unsupervised-llamas.com/llamas/)
- [DET](https://spritea.github.io/DET/)
- [CurveLanes](https://github.com/xbjxh/curvelanes)
- [VIL-100](https://github.com/yujun0-0/MMA-Net) ICCV 2021
- [Comma2k19 LD](https://www.kaggle.com/datasets/tkm2261/comma2k19-ld) CVPR 2022
- [OpenLane: 3D lane datasets](https://github.com/OpenPerceptionX/OpenLane) ECCV 2022 Oral
- [SDLane Dataset](https://www.42dot.ai/akit/dataset/) CVPR 2022
- [ONCE-3DLanes](https://once-3dlanes.github.io/3dlanes/) CVPR 2022
- [OpenLane-V](https://github.com/dongkwonjin/RVLD)# Contact & Feedback
If you have any suggestions about papers, feel free to mail me :)
- [blog](http://www.cverblog.cn/)
- [pull](https://github.com/amusi/awesome-lane-detection/pulls)