Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zlpure/awesome-graph-representation-learning
A curated list for awesome graph representation learning resources.
https://github.com/zlpure/awesome-graph-representation-learning
List: awesome-graph-representation-learning
deep-learning graph-representation-learning
Last synced: about 1 month ago
JSON representation
A curated list for awesome graph representation learning resources.
- Host: GitHub
- URL: https://github.com/zlpure/awesome-graph-representation-learning
- Owner: zlpure
- Created: 2021-07-15T02:07:50.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-11-22T16:26:04.000Z (about 2 years ago)
- Last Synced: 2024-05-21T17:09:52.140Z (7 months ago)
- Topics: deep-learning, graph-representation-learning
- Homepage:
- Size: 21.5 KB
- Stars: 148
- Watchers: 5
- Forks: 27
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-AIDD - awesome-graph-representation-learning
- awesome-protein-representation-learning - awesome-graph-representation-learning
- Awesome-Partial-Graph-Machine-Learning - awesome-graph-representation-learning
- awesome-machine-learning-resources - **[List - graph-representation-learning?style=social) (Table of Contents)
- ultimate-awesome - awesome-graph-representation-learning - A curated list for awesome graph representation learning resources. (Other Lists / PowerShell Lists)
README
# Awesome Deep Graph Representation Learning
[![Awesome](https://awesome.re/badge.svg)](https://awesome.re) ![visitors](https://visitor-badge.glitch.me/badge?page_id=zlpure/awesome-graph-representation-learning) ![GitHub stars](https://img.shields.io/github/stars/zlpure/awesome-graph-representation-learning.svg?color=green) ![GitHub forks](https://img.shields.io/github/forks/zlpure/awesome-graph-representation-learning?color=9cf)
A curated list for awesome deep graph representation learning resources. Inspired by [awesome-deep-learning-papers](https://github.com/terryum/awesome-deep-learning-papers), [awesome-deep-vision](https://github.com/kjw0612/awesome-deep-vision), [awesome-architecture-search](https://github.com/markdtw/awesome-architecture-search), [awesome-self-supervised-learning-for-graphs](https://github.com/SXKDZ/awesome-self-supervised-learning-for-graphs), and [awesome-deep-gnn](https://github.com/mengliu1998/awesome-deep-gnn).
# Background
> The field of graph representation learning has grown at an incredible (and sometimes unwieldy) pace over the past seven years, transforming from a small subset of researchers working on a relatively niche topic to one of the fastest growing sub-areas of deep learning. - - William L. HamiltonGraph representation learning (GRL) have recently become increasingly popular due to their ability to model *relationships* or *interactions* of complex systems. However GRL is still a nascent field in the Machine Learning community. Rather than providing overwhelming amount of papers, the goal of this repository is to provide a *curated list* of awesome GRL papers in recent top conference that we have read, as well as some intriguing blog posts and talks.
# Contributing
You are welcome to contribute this repo by contracting [me]([email protected]) or adding [pull request](https://github.com/zlpure/awesome-graph-representation-learning/pulls).Markdown formart:
```markdown
Paper Name [[pdf]](link) [[code]](link)Author 1, Author 2, Author 3.
Conference Year
*Taxonomy* (No more than 5 words)
```
# Table of Contents
- [Papers](#papers)
- [Surveys](#surveys)
- [ICML 2022](#ICML-2022)
- [ICLR 2022](#ICLR-2022)
- [WWW 2022](#WWW-2022)
- [NeurIPS 2021](#NeurIPS-2021)
- [KDD 2021](#KDD-2021)
- [ICML 2021](#ICML-2021)
- [WWW 2021](#WWW-2021)
- [ICLR 2021](#ICLR-2021)
- [NeurIPS 2020](#NeurIPS-2020)
- [KDD 2020](#KDD-2020)
- [AAAI 2021](#AAAI-2021)
- [ICML 2020](#ICML-2020)
- [ICLR 2020](#ILCR-2020)
- [NeurIPS 2019](#NeurIPS-2019)
- [Some Must-Read Papers](#some-must-read-papers)
- [Talks](#Talks)
- [Blog posts](#Blog-posts)# Papers
## Surveys
- Graph Representation Learning [[pdf]](https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf)William L. Hamilton
Book
*Classical survey*
- Networks, Crowds, and Markets - Reasoning About a Highly Connected World [[pdf]](https://www.cs.cornell.edu/home/kleinber/networks-book/networks-book.pdf)D Easley, J Kleinberg
Book
*Basic concepts on Networks*
- Network Science [[pdf]](http://networksciencebook.com/chapter/0)
Albert-László Barabási
Book
*Basic concepts on Networks*
- Relational inductive biases, deep learning, and graph networks [[pdf]](https://arxiv.org/pdf/1806.01261.pdf)
Battaglia, Peter W and Hamrick, Jessica B, et al.
Arxiv 2018
*Relational inductive biases on graphs*
- A comprehensive survey on graph neural networks [[pdf]](https://arxiv.org/pdf/1901.00596.pdf)
Zonghan Wu, Shirui Pan, Chen, Guodong Long, Chengqi Zhang, Philip, S YuIEEE 2020
*Survey*
- Self-Supervised Learning of Graph Neural Networks: A Unified Review [[pdf]](https://arxiv.org/pdf/2102.10757.pdf)
Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, Shuiwang Ji
Arxiv 2021
*Self-supervised learning*
- Combinatorial optimization and reasoning with graph neural networks [[pdf]](https://arxiv.org/pdf/2102.09544.pdf)
Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, Petar Veličković
IJCAI 2021
*Survey on GNNs for combinatorial optimization and algorithmic reasoning*
## ICML 2022
- 3D Infomax improves GNNs for Molecular Property Prediction [[pdf]](https://arxiv.org/abs/2110.04126.pdf) [[code]](https://github.com/HannesStark/3DInfomax)Hannes Stärk, Dominique Beaini, Gabriele Corso, et al.
*Molecular property prediction on 3D molecule geometry*
- EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction [[pdf]](https://arxiv.org/pdf/2202.05146.pdf) [[code]](https://github.com/HannesStark/EquiBind)
Hannes Stärk, Octavian-Eugen Ganea, et al.
*Drug-protein binding prediction*
- G-Mixup: Graph Data Augmentation for Graph Classification [[pdf]](https://arxiv.org/pdf/2202.07179.pdf) [[code]](https://github.com/ahxt/g-mixup)
Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Xia Hu
*Mixup on graphs*
## ICLR 2022
- Context-Aware Sparse Deep Coordination Graphs [[pdf]](https://arxiv.org/abs/2106.02886.pdf) [[code]](https://github.com/TonghanWang/CASEC-MACO-benchmark)Tonghan Wang, Liang Zeng, et al.
*Coordination graphs on multi-agent RL*
- On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features [[pdf]](https://arxiv.org/pdf/2111.12128.pdf)
Emanuele Rossi, Henry Kenlay, et al.
*Feature propagation on graphs*
- Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods [[pdf]](https://arxiv.org/pdf/2111.04840.pdf) [[code]](https://github.com/amazon-research/gnn-tail-generalization)
Wenqing Zheng, Edward W Huang, et al.
*Imbalanced learning on graphs*
- Equivariant Graph Mechanics Networks with Constraints [[pdf]](https://arxiv.org/abs/2203.06442.pdf) [[code]](https://github.com/hanjq17/GMN)
Wenbing Huang, Jiaqi Han, et al.
*AI for science using GNNs*
- Discovering Invariant Rationales for Graph Neural Networks [[pdf]](https://arxiv.org/pdf/2201.12872.pdf) [[code]](https://github.com/Wuyxin/DIR-GNN)
Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, Tat-Seng Chua
*Causal inference on graphs*
- Is Homophily a Necessity for Graph Neural Networks? [[pdf]](https://arxiv.org/pdf/2106.06134.pdf)
Yao Ma, Xiaorui Liu, Neil Shah, Jiliang Tang
*Homophily property on GNNs*
- Iterative Refinement Graph Neural Network for Antibody Sequence-Structure Co-design [[pdf]](https://arxiv.org/pdf/2110.04624.pdf)
Wengong Jin, Jeremy Wohlwend, Regina Barzilay, Tommi Jaakkola
*AI for drugs using GNNs*
- Graph-Guided Network for Irregularly Sampled Multivariate Time Series [[pdf]](https://arxiv.org/pdf/2110.05357.pdf) [[code]](https://github.com/mims-harvard/Raindrop)
Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, Marinka Zitnik
*Temporal-spatial data using GNNs*
- Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical Solutions [[pdf]](https://arxiv.org/pdf/2106.01098.pdf) [[code]](https://github.com/BorgwardtLab/ggme)
Leslie O'Bray, Max Horn, Bastian Rieck, Karsten Borgwardt
*Evaluation of graph generation*
- Context-Aware Sparse Deep Coordination Graphs [[pdf]](https://arxiv.org/pdf/2106.02886.pdf) [[code]](https://github.com/TonghanWang/CASEC-MACO-benchmark)
Tonghan Wang, Liang Zeng, Weijun Dong, Qianlan Yang, Yang Yu, Chongjie Zhang
*Coordination graphs*
## WWW 2022
- Towards Unsupervised Deep Graph Structure Learning [[pdf]](https://arxiv.org/abs/2201.06367.pdf) [[code]](https://github.com/GRAND-Lab/SUBLIME)Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, Shirui Pan
*Graph structure learning*
- ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs [[pdf]](http://keg.cs.tsinghua.edu.cn/yuxiao/papers/WWW22-Wang-ClusterSCL.pdf) [[code]](https://github.com/wyl7/ClusterSCL)
Yanling Wang, Jing Zhang, et al.
*Graph contrastive learning*
- ALLIE: Active Learning on Large-scale Imbalanced Graphs [[pdf]](https://dl.acm.org/doi/pdf/10.1145/3485447.3512229)
Limeng Cui, Xianfeng Tang, et al.
*Active learning & Imbalanced learning*
- PaSca: A Graph Neural Architecture Search System under the Scalable Paradigm [[pdf]](https://arxiv.org/pdf/2203.00638.pdf) (Best candidiate paper)
Wentao Zhang, Yu Shen, et al.
*Neural architecture search on graphs*
## NeurIPS 2021
- Multi-view Contrastive Graph Clustering [[pdf]](https://arxiv.org/pdf/2110.11842.pdf) [[code]](https://github.com/Panern/MCGC)Erlin Pan, Zhao Kang
*Graph clustering*
- Subgraph Federated Learning with Missing Neighbor Generation [[pdf]](https://arxiv.org/pdf/2106.13430.pdf)
Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, Siu Ming Yiu
*Federated learning on graphs*
- Edge Representation Learning with Hypergraphs [[pdf]](https://arxiv.org/pdf/2106.15845.pdf) [[code]](https://github.com/harryjo97/EHGNN)
Jaehyeong Jo, Jinheon Baek, Seul Lee, et al.
*Edge representation learning on graphs*
- Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration [[pdf]](https://arxiv.org/pdf/2109.14285.pdf)
Xiao Wang, Hongrui Liu, Chuan Shi, Cheng Yang
*Confidence calibration of GNNs*
- InfoGCL: Information-Aware Graph Contrastive Learning [[pdf]](https://arxiv.org/pdf/2110.15438.pdf)
Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, Xiang Zhang
*Graph contrastive learning*
- Robustness of Graph Neural Networks at Scale [[pdf]](https://arxiv.org/pdf/2110.14038.pdf)
Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, Stephan Günnemann
*Robustness of GNNs*
- Not All Low-Pass Filters are Robust in Graph Convolutional Networks [[pdf]](https://openreview.net/pdf?id=bDdfxLQITtu)
Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, Junzhou Huang, Wenwu Zhu
*Robustness of GNNs*
- Towards Open-World Feature Extrapolation- An Inductive Graph Learning Approach [[pdf]](https://arxiv.org/pdf/2110.04514.pdf)
Qitian Wu, Chenxiao Yang, Junchi Yan
*Application of GNNs: feature extrapolation*
## KDD 2021
- Adaptive Transfer Learning on Graph Neural Networks [[pdf]](https://arxiv.org/pdf/2107.08765.pdf)Xueting Han, Zhenhuan Huang, Bang An, Jing Bai
*Transfer learning on GNNs*
- Tail-GNN: Tail-Node Graph Neural Networks [[pdf]](https://dl.acm.org/doi/pdf/10.1145/3447548.3467276)
Zemin Liu, Trung-Kien Nguyen, Yuan Fang
*Long-tailed recognization on graph node degrees*
- Zero-shot Node Classification with Decomposed Graph Prototype Network [[pdf]](https://arxiv.org/pdf/2106.08022.pdf)
Zheng Wang, Jialong Wang, Yuchen Guo, Zhiguo Gong
*Zero-shot Node Classification*
- ImGAGN:Imbalanced Network Embedding via Generative Adversarial Graph Networks [[pdf]](https://arxiv.org/pdf/2106.02817.pdf) [[code]](https://github.com/Leo-Q-316/ImGAGN)
Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, Hongzhi Yin
*Imbalanced Network Embedding*
- ROD: Reception-aware Online Distillation for Sparse Graphs [[pdf]](https://arxiv.org/pdf/2107.11789.pdf)
Wentao Zhang, Yuezihan Jiang, Yang Li, et al.
*New architecture of GNNs*
- When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods [[pdf]](https://dl.acm.org/doi/abs/10.1145/3447548.3467283) [[code]](https://github.com/m30m/gnn-explainability)
Lukas Faber, Amin K. Moghaddam, Roger Wattenhofer
*Explanations of GNNs*
## ICML 2021
- Training Graph Neural Networks with 1000 Layers [[pdf]](https://arxiv.org/pdf/2106.07476.pdf) [[code]](https://www.deepgcns.org/arch/gnn1000)Guohao Li, Matthias Müller, Bernard Ghanem, Vladlen Koltun
*Deeper GNNs*
- GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training [[pdf]](https://arxiv.org/pdf/2009.03294.pdf)
Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, Liwei Wang
*Training mechanism*
- Graph Contrastive Learning Automated [[pdf]](https://arxiv.org/pdf/2106.07594.pdf) [[code]](https://github.com/Shen-Lab/GraphCL_Automated)
Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang
*Graph contrastive learning*
- GNNAutoScale- Scalable and Expressive Graph Neural Networks via Historical Embeddings [[pdf]](https://arxiv.org/pdf/2106.05609.pdf) [[code]](https://github.com/rusty1s/pyg_autoscale)
Matthias Fey, Jan E. Lenssen, Frank Weichert, Jure Leskovec
*Large scale GNNs*
- A Unified Lottery Ticket Hypothesis for Graph Neural Networks [[pdf]](https://arxiv.org/abs/2102.06790) [[code]](https://github.com/VITA-Group/Unified-LTH-GNN)
Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, Zhangyang Wang
*Sparse training on GNNs*
- On Explainability of Graph Neural Networks via Subgraph Explorations [[pdf]](https://arxiv.org/pdf/2102.05152.pdf) [[code]](https://github.com/divelab/DIG)
Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, Shuiwang Ji
*Explanations of GNNs*
- Elastic Graph Neural Networks [[pdf]](https://arxiv.org/pdf/2107.06996.pdf) [[code]](https://github.com/lxiaorui/ElasticGNN)
Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, Jiliang Tang
*New architecture of GNNs*
## WWW 2021
- Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework [[pdf]](https://arxiv.org/pdf/2103.02885.pdf) [[code]](https://github.com/BUPT-GAMMA/CPF)
Cheng Yang, Jiawei Liu, Chuan Shi*Graph + knowledge distillation*
- Graph Contrastive Learning with Adaptive Augmentation [[pdf]](https://arxiv.org/pdf/2010.14945.pdf) [[code]](https://github.com/CRIPAC-DIG/GCA)
Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, Liang Wang
*Graph contrastive learning*
- HDMI: High-order Deep Multiplex Infomax [[pdf]](https://arxiv.org/pdf/2102.07810.pdf)
Baoyu Jing, Chanyoung Park, Hanghang Tong
*Multiplex graph representation learning*
## ICLR 2021
- HOW TO FIND YOUR FRIENDLY NEIGHBORHOOD: GRAPH ATTENTION DESIGN WITH SELF-SUPERVISION [[pdf]](https://openreview.net/pdf?id=Wi5KUNlqWty) [[code]](https://github.com/dongkwan-kim/SuperGAT)Dongkwan Kim, Alice Oh
*Graph attention mechanism*
- CopulaGNN: Towards Integrating Representational and Correlational Roles of Graphs in Graph Neural Networks [[pdf]](https://arxiv.org/pdf/2010.02089.pdf) [[code]](https://github.com/jiaqima/CopulaGNN)
Jiaqi Ma, Bo Chang, Xuefei Zhang, Qiaozhu Mei*Representational and correlational roles of graphs*
- How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks [[pdf]](https://openreview.net/pdf?id=UH-cmocLJC)
Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka
*Extrapolation*
- On the Bottleneck of Graph Neural Networks and its Practical Implications [[pdf]](https://arxiv.org/pdf/2006.05205.pdf) [[code]](https://github.com/tech-srl/bottleneck/)
Uri Alon, Eran Yahav*over-squashing on GNNs*
## NeurIPS 2020
- Graph Random Neural Network for Semi-Supervised Learning on Graphs [[pdf]](https://arxiv.org/pdf/2005.11079.pdf) [[code]](https://github.com/THUDM/GRAND)Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, Jie Tang
*New architecture of GNNs*
- Graph Meta Learning via Local Subgraphs [[pdf]](https://arxiv.org/pdf/2006.07889.pdf) [[code]](https://github.com/mims-harvard/G-Meta)
Kexin Huang, Marinka Zitnik
*Graph meta learning*
- Subgraph Neural Networks [[pdf]](https://arxiv.org/pdf/2006.10538.pdf) [[code]](https://github.com/mims-harvard/SubGNN)
Emily Alsentzer, Samuel G. Finlayson, Michelle M. Li, Marinka Zitnik
*Subgraph GNNs*
- Rethinking pooling in graph neural networks [[pdf]](https://arxiv.org/pdf/2010.11418.pdf) [[code]](https://github.com/AaltoPML/Rethinking-pooling-in-GNNs)
Diego Mesquita, Amauri H. Souza, Samuel Kaski
*Rethingking pooloing in GNNs*
- Design Space for Graph Neural Networks [[pdf]](https://arxiv.org/pdf/2011.08843.pdf) [[code]](https://github.com/snap-stanford/graphgym)
Jiaxuan You, Rex Ying, Jure Leskovec
*Design space for GNNs*
- Handling Missing Data with Graph Representation Learning [[pdf]](https://arxiv.org/pdf/2010.16418.pdf)
Jiaxuan You, Xiaobai Ma, Daisy Yi Ding, Mykel Kochenderfer, Jure Leskovec
*Matrix completion using GNNs*
- Beyond Homophily in Graph Neural Networks- Current Limitations and Effective Designs [[pdf]](https://arxiv.org/pdf/2006.11468.pdf) [[code]](https://github.com/GemsLab/H2GCN)
Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, Danai Koutra
*Graph homophily*
- GNNGuard: Defending Graph Neural Networks against Adversarial Attacks [[pdf]](https://arxiv.org/pdf/2006.08149.pdf) [[code]](https://github.com/mims-harvard/GNNGuard)
Xiang Zhang, Marinka Zitnik
*Graph robustness*
- Graph Contrastive Learning with Augmentations [[pdf]](https://arxiv.org/pdf/2010.13902.pdf) [[code]](https://github.com/Shen-Lab/GraphCL)
Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, Yang Shen
*Graph contrastive learning*
- Self-Supervised Graph Transformer on Large-Scale Molecular Data [[pdf]](https://arxiv.org/pdf/2007.02835.pdf)
Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, Junzhou Huang
*Graph transformer*
- Scalable Graph Neural Networks via Bidirectional Propagation [[pdf]](https://arxiv.org/pdf/2010.15421.pdf) [[code]](https://github.com/chennnM/GBP)
Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, Ji-Rong Wen
*Large scale GNNs*
## KDD 2020
- AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [[pdf]](https://arxiv.org/pdf/2007.02265.pdf) [[code]](https://github.com/zhumeiqiBUPT/AM-GCN)Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei
*New architecture of GNNs*
- Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks [[pdf]](https://arxiv.org/pdf/2005.11650.pdf) [[code]](https://github.com/nnzhan/MTGNN)
Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang
*Graph + time series*
- GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [[pdf]](https://arxiv.org/pdf/2006.09963.pdf) [[code]](https://github.com/THUDM/GCC)
Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang
*Grapg contrastive learning*
- Towards Deeper Graph Neural Networks [[pdf]](https://arxiv.org/pdf/2007.09296.pdf) [[code]](https://github.com/divelab/DeeperGNN)
Meng Liu, Hongyang Gao, Shuiwang Ji
*Deeper GNNs*
- TinyGNN: Learning Efficient Graph Neural Networks [[pdf]](https://dl.acm.org/doi/10.1145/3394486.3403236)
Bencheng Yan, Chaokun Wang, Gaoyang Guo, Yunkai Lou
*Large scale GNNs*
- XGNN: Towards Model-Level Explanations of Graph Neural Networks [[pdf]](https://arxiv.org/pdf/2006.02587.pdf)
Hao Yuan, Jiliang Tang, Xia Hu, Shuiwang Ji
*Explanations of GNNs*## AAAI 2021
- Beyond Low-frequency Information in Graph Convolutional Networks [[pdf]](https://arxiv.org/pdf/2101.00797.pdf) [[code]](https://github.com/bdy9527/FAGCN)Deyu Bo, Xiao Wang, Chuan Shi, Huawei Shen
*New architecture of GNNs*
- Data Augmentation for Graph Neural Networks [[pdf]](https://arxiv.org/pdf/2006.06830.pdf) [[code]](https://github.com/zhao-tong/GAug)
Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, Neil Shah
*Graph data augmentation*
- GraphMix: Improved Training of GNNs for Semi-Supervised Learning [[pdf]](https://arxiv.org/pdf/1909.11715.pdf) [[code]](https://github.com/vikasverma1077/GraphMix)
Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, Jian Tang
*New architecture of GNNs*
- Identity-aware Graph Neural networks [[pdf]](https://arxiv.org/pdf/2101.10320.pdf)
Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, Jure Leskovec
*New architecture of GNNs*
- Learning to Pre-train Graph Neural Networks [[pdf]](http://www.shichuan.org/doc/101.pdf) [[code]](https://github.com/rootlu/L2P-GNN)
Yuanfu Lu, Xunqiang Jiang, Yuan Fang, Chuan Shi
*Pre-training of GNNs*
## ICML 2020
- Contrastive Multi-View Representation Learning on Graphs [[pdf]](https://arxiv.org/pdf/2006.05582.pdf)Kaveh Hassani, Amir Hosein Khasahmadi
*Graph contrastive learning*
- Graph Structure of Neural Networks [[pdf]](https://arxiv.org/pdf/2007.06559.pdf) [[code]](https://github.com/facebookresearch/graph2nn)
Jiaxuan You, Jure Leskovec, Kaiming He, Saining Xie
*Graph structure*
- Robust Graph Representation Learning via Neural Sparsification [[pdf]](http://proceedings.mlr.press/v119/zheng20d/zheng20d.pdf)
Cheng Zheng, Bo Zong, Wei Cheng, et al.
*Graph sparsification*
- Simple and Deep Graph Convolutional Networks [[pdf]](https://arxiv.org/pdf/2007.02133.pdf) [[code]](https://github.com/chennnM/GCNII)
Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, Yaliang Li
*New architecture of GNNs*
- When Does Self-Supervision Help Graph Convolutional Networks? [[pdf]](https://arxiv.org/pdf/2006.09136.pdf) [[code]](https://github.com/Shen-Lab/SS-GCNs)
Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
*Graph self-supervision learning*
## ICLR 2020
- DropEdge: Towards Deep Graph Convolutional Networks on Node Classification [[pdf]](https://arxiv.org/pdf/1907.10903.pdf) [[code]](https://github.com/DropEdge/DropEdge)Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huang
*New architecture of GNNs*
- Geom-GCN: Geometric Graph Convolutional Networks [[pdf]](https://arxiv.org/pdf/2002.05287.pdf) [[code]](https://github.com/graphdml-uiuc-jlu/geom-gcn)
Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, Bo Yang
*New architecture of GNNs*
- GraphSAINT: Graph Sampling Based Inductive Learning Method [[pdf]](https://arxiv.org/pdf/1907.04931.pdf) [[code]](https://github.com/GraphSAINT/GraphSAINT)
Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor Prasanna
*Large scale GNNs*
- PairNorm: Tackling Oversmoothing in GNNs [[pdf]](https://arxiv.org/pdf/1909.12223.pdf) [[code]](https://github.com/LingxiaoShawn/PairNorm)
Lingxiao Zhao, Leman Akoglu
*Deeper GNNs*
- Strategies for Pre-training Graph Neural Networks [[pdf]](https://arxiv.org/pdf/1905.12265.pdf) [[code]](https://github.com/snap-stanford/pretrain-gnns)
Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, Jure Leskovec
*Graph pre-training*
- WHAT GRAPH NEURAL NETWORKS CANNOT LEARN: DEPTH VS WIDTH [[pdf]](https://openreview.net/pdf?id=B1l2bp4YwS)
Andreas Loukas
*Expressive power of GNNs*
- Neural Execution of Graph Algorithms [[pdf]](https://openreview.net/pdf?id=SkgKO0EtvS)
Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, Charles Blundell
*Algorithmic reasoning*
- What Can Neural Networks Reason About?[[pdf]](https://openreview.net/forum?id=rJxbJeHFPS)
Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka
*Algorithmic reasoning*
## NeurIPS 2019
- GNNExplainer: Generating Explanations for Graph Neural Networks [[pdf]](https://arxiv.org/pdf/1903.03894.pdf) [[code]](https://github.com/RexYing/gnn-model-explainer)Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, Jure Leskovec
*Explanations of GNNs*
- Understanding Attention and Generalization in Graph Neural Networks [[pdf]](https://arxiv.org/pdf/1905.02850.pdf) [[code]](https://github.com/bknyaz/graph_attention_pool)
Boris Knyazev, Graham W. Taylor, Mohamed R. Amer
*Understanding attention in GNNs*
## Some Must-Read Papers
- Collective dynamics of 'small-world' networks [[pdf]](https://www.nature.com/articles/30918)Watts, Duncan J and Strogatz, Steven H
Nature 1998
*'Small-world phenomena'*
- Network motifs: simple building blocks of complex networks [[pdf]](https://science.sciencemag.org/content/298/5594/824)
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon
Science 2002
*Network motifs*
- Rolx: structural role extraction \& mining in large graphs [[pdf]](https://dl.acm.org/doi/pdf/10.1145/2339530.2339723)
Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, et al.
KDD 2012
*Structural rele*
- Birds of a feather: Homophily in social networks [[pdf]](https://www.annualreviews.org/doi/pdf/10.1146/annurev.soc.27.1.415)
McPherson, Miller and Smith-Lovin, Lynn and Cook, James M
Annual review of sociology 2001
*Homophily phenomena*
- Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec [[pdf]](https://arxiv.org/abs/1710.02971.pdf) [[code]](https://github.com/xptree/NetMF)
Qiu, Jiezhong and Dong, Yuxiao and Ma, Hao and Li, Jian and Wang, Kuansan and Tang, Jie
WSDM 2018
*Unified framework for network embedding*
# Talks
- Graph Neural Networks with Learnable Structural and Positional Representation [[video]](https://www.youtube.com/watch?v=hADjUl4ymoQ)Xavier Bresson 2021
- Graph Representation Learning:Foundations, Methods, Applications and Systems [[pdf]](https://kdd2021graph.github.io)
KDD 2021 Graph tutorial
- Graph Neural Networks: Algorithms and Applications [[pdf]](https://drive.google.com/file/d/1ULelq5bs7bU1iQLhQnapVSQO6fJnitSJ/view)
Jian Tang 2021
- Graph Representation Learning for Drug Discovery [[pdf]](https://drive.google.com/file/d/19e0scMh4Fxzsbq6a8Z9idsYcsnLAgYAx/view)
Jian Tang 2021
- Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs [[pdf]](https://www.jiongzhu.net/assets/files/F20-Jiong-H2GCN-NeurIPS-Talk.pdf)
Jiong Zhu 2021
- Theoretical Foundations of Graph Neural Networks [[pdf]](https://petar-v.com/talks/GNN-Wednesday.pdf) [[video]](https://www.youtube.com/watch?v=uF53xsT7mjc)
Petar Veličković 2021
- Expressive Power of Graph Neural Networks [[video]](https://www.bilibili.com/video/BV1Dz4y1Q7d4?from=search&seid=12042387670249475077)
Huawei Shen 2020
- Graph Representation Learning for Algorithmic Reasoning [[pdf]](https://petar-v.com/talks/Algo-WWW.pdf) [[video]](https://www.youtube.com/watch?v=IPQ6CPoluok)
Petar Veličković 2020
# Blog posts
- Graph Neural Networks as Neural Diffusion PDEs [[URL]](https://towardsdatascience.com/graph-neural-networks-as-neural-diffusion-pdes-8571b8c0c774)Michael Bronstein 2022
- Graph Contrastive learning [[URL]](https://sxkdz.github.io/research/GraphCL/)
Yanqiao Zhu 2021
- Temporal Graph Networks [[URL]](https://towardsdatascience.com/temporal-graph-networks-ab8f327f2efe)
Michael Bronstein 2020
- Graph Diffusion Convolution [[URL]](https://msrmblog.github.io/graph-diffusion-convolution/)
Johannes Klicpera 2020