Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome-TS-anomaly-detection
List of tools & datasets for anomaly detection on time-series data.
https://github.com/rob-med/awesome-TS-anomaly-detection
Last synced: 5 days ago
JSON representation
-
Anomaly Detection Software
- Nupic
- MIDAS - Based Detector of Anomalies in Edge Streams, detects microcluster anomalies from an edge stream in constant time and memory. | Apache-2.0 | :heavy_check_mark:
- Chaos Genius
- CueObserve - 2.0 | :heavy_check_mark:
- EGADS - cases in a single package with the only dependency being Java. | GPL | :heavy_check_mark:
- flow-forecast - 3 | :heavy_check_mark:
- Hastic - based UI.| GPL | :heavy_check_mark:
- Luminaire - 2.0 | :heavy_check_mark:
- Orion
- OutlierDetection.jl
- PyOD - Clause | :heavy_check_mark:
- Skyline - time anomaly detection system, built to enable passive monitoring of hundreds of thousands of metrics. | MIT | :heavy_check_mark:
- ADTK - based time series anomaly detection. | MPL 2.0 | ❌
- AnomalyDetection - source R package to detect anomalies which is robust, from a statistical standpoint, in the presence of seasonality and an underlying trend. | GPL | ❌
- Anomalyzer - 2.0 | ❌
- banpei - series. | MIT | ❌
- banshee
- CAD - time AD on streagming data (winner algorithm of the 2016 NAB competition). | AGPL | ❌
- DeepADoTS - based techniques for Anomaly Detection on Time-Series data. | MIT | ❌
- LoudML
- luminol - 2.0 | ❌
- oddstream - 3 | ❌
- PyOdds - to end Python system for outlier detection with database support. PyODDS provides outlier detection algorithms, which support both static and time-series data. | MIT | ❌
- PySAD - Clause | ❌
- rrcf
- Surus - An implementation of the Robust PCA. | Apache-2.0 | ❌
- Telemanom
- datastream.io - source framework for real-time anomaly detection using Python, Elasticsearch and Kibana. | Apache-2.0 | ❌
- Nupic
-
Related Software
-
Time-Series Analysis
- sktime - learn compatible tools to build, tune and validate time series models for multiple learning problems. | BSD 3-Clause | :heavy_check_mark:
- MatrixProfile - 2.0 | :heavy_check_mark:
- Merlion - Clause | :heavy_check_mark:
- SaxPy
- sktime-dl - Clause | :heavy_check_mark:
- Tigramite - dimensional time series datasets and model the obtained causal dependencies for causal mediation and prediction analyses.| GPLv3.0 | :heavy_check_mark:
- tsflex - window feature extraction on multivariate, irregularly-sampled sequence data. | MIT | :heavy_check_mark:
- tslearn - learn, numpy and scipy libraries. | BSD 2-Clause | :heavy_check_mark:
- seglearn - Clause | ❌
- Squey - depth exploration of timeseries while displaying every outliers. | MIT | :heavy_check_mark:
- sktime - learn compatible tools to build, tune and validate time series models for multiple learning problems. | BSD 3-Clause | :heavy_check_mark:
-
Forecasting
-
Labeling
- Curve - source tool to help label anomalies on time-series data. | Apache-2.0 | ❌
- Taganomaly
-
-
Benchmark Datasets
-
Labeling
-
-
Citation Policy
-
Labeling
-
Programming Languages
Sub Categories
Keywords
time-series
23
anomaly-detection
23
machine-learning
16
python
15
deep-learning
12
forecasting
9
data-science
9
timeseries
7
time-series-analysis
6
outlier-detection
6
anomaly
5
neural-networks
3
monitoring
3
dataset
3
data-mining
3
unsupervised-learning
3
time-series-classification
3
pytorch
3
tensorflow
3
time-series-forecasting
3
outliers
3
time-series-regression
3
prometheus
2
influxdb
2
lstm
2
automl
2
r
2
scikit-learn
2
timeseries-analysis
2
benchmarking
2
machinelearning
2
python3
2
ai
2
streaming-data
2
changepoint-detection
2
monitoring-tool
2
fraud-detection
2
database
2
anomalydetection
2
time-series-prediction
2
analytics
2
outlier-ensembles
1
out-of-distribution-detection
1
transfer-learning
1
transformer
1
novelty-detection
1
data-analysis
1
generative-adversarial-network
1
autoencoder
1
orion
1