Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

awesome-TS-anomaly-detection

List of tools & datasets for anomaly detection on time-series data.
https://github.com/rob-med/awesome-TS-anomaly-detection

Last synced: 1 day ago
JSON representation

  • Anomaly Detection Software

    • Nupic
    • MIDAS - Based Detector of Anomalies in Edge Streams, detects microcluster anomalies from an edge stream in constant time and memory. | Apache-2.0 | :heavy_check_mark:
    • Chaos Genius
    • CueObserve - 2.0 | :heavy_check_mark:
    • EGADS - cases in a single package with the only dependency being Java. | GPL | :heavy_check_mark:
    • flow-forecast - 3 | :heavy_check_mark:
    • Hastic - based UI.| GPL | :heavy_check_mark:
    • Luminaire - 2.0 | :heavy_check_mark:
    • Orion
    • OutlierDetection.jl
    • PyOD - Clause | :heavy_check_mark:
    • Skyline - time anomaly detection system, built to enable passive monitoring of hundreds of thousands of metrics. | MIT | :heavy_check_mark:
    • ADTK - based time series anomaly detection. | MPL 2.0 | ❌
    • AnomalyDetection - source R package to detect anomalies which is robust, from a statistical standpoint, in the presence of seasonality and an underlying trend. | GPL | ❌
    • Anomalyzer - 2.0 | ❌
    • banpei - series. | MIT | ❌
    • banshee
    • CAD - time AD on streagming data (winner algorithm of the 2016 NAB competition). | AGPL | ❌
    • DeepADoTS - based techniques for Anomaly Detection on Time-Series data. | MIT | ❌
    • LoudML
    • luminol - 2.0 | ❌
    • oddstream - 3 | ❌
    • PyOdds - to end Python system for outlier detection with database support. PyODDS provides outlier detection algorithms, which support both static and time-series data. | MIT | ❌
    • PySAD - Clause | ❌
    • rrcf
    • Surus - An implementation of the Robust PCA. | Apache-2.0 | ❌
    • Telemanom
    • MIDAS - Based Detector of Anomalies in Edge Streams, detects microcluster anomalies from an edge stream in constant time and memory. | Apache-2.0 | :heavy_check_mark:
    • ruptures - line change point detection. This package provides methods for the analysis and segmentation of non-stationary signals. | BSD 2-Clause | :heavy_check_mark:
    • Adaptive Alerting - 2.0 | ❌
    • Donut - | ❌
    • datastream.io - source framework for real-time anomaly detection using Python, Elasticsearch and Kibana. | Apache-2.0 | ❌
    • Nupic
    • Time-Series Analysis

      • sktime - learn compatible tools to build, tune and validate time series models for multiple learning problems. | BSD 3-Clause | :heavy_check_mark:
      • MatrixProfile - 2.0 | :heavy_check_mark:
      • Merlion - Clause | :heavy_check_mark:
      • SaxPy
      • sktime-dl - Clause | :heavy_check_mark:
      • Tigramite - dimensional time series datasets and model the obtained causal dependencies for causal mediation and prediction analyses.| GPLv3.0 | :heavy_check_mark:
      • tsflex - window feature extraction on multivariate, irregularly-sampled sequence data. | MIT | :heavy_check_mark:
      • tslearn - learn, numpy and scipy libraries. | BSD 2-Clause | :heavy_check_mark:
      • seglearn - Clause | ❌
      • Squey - depth exploration of timeseries while displaying every outliers. | MIT | :heavy_check_mark:
      • sktime - learn compatible tools to build, tune and validate time series models for multiple learning problems. | BSD 3-Clause | :heavy_check_mark:
    • Forecasting

      • ETNA - 2.0 | :heavy_check_mark:
      • darts - 2.0 | :heavy_check_mark:
      • Prophet - linear trends are fit with yearly and weekly seasonality, plus holidays. | BSD | :heavy_check_mark:
      • PyFlux - Clause | ❌
      • GluonTS - 2.0 | :heavy_check_mark:
      • pmdarima - learn-friendly interface. | MIT | :heavy_check_mark:
    • Labeling

      • Curve - source tool to help label anomalies on time-series data. | Apache-2.0 | ❌
      • Taganomaly
  • Benchmark Datasets

  • Citation Policy