Machine-Learning
Awesome list (courses, books, videos etc.) and implementation of Machine Learning Algorithms
https://github.com/ElizaLo/Machine-Learning
Last synced: 1 day ago
JSON representation
-
Awesome List
-
Ukraine
- - A curated list of awesome Deep Learning tutorials, projects and communities
- - The most cited deep learning papers
- - A curated list of awesome awesomeness
- - Directory of Python books
- - A curated list of awesome Deep Learning for Natural Language Processing resources
- - Curated list of Python resources for data science
- - A curated list of awesome adversarial machine learning resources
- - A curated list of practical business machine learning (BML) and business data science (BDS) applications for Accounting, Customer, Employee, Legal, Management and Operations
- - Papers on Graph neural network (GNN)
- - Awesome free machine learning and AI courses with video lectures
- - Curated list of reads, implementations and core concepts of Artificial Intelligence, Deep Learning, Machine Learning by best folk in the world
- - awesome tools and libs for AI, Deep Learning, Machine Learning, Computer Vision, Data Science, Data Analytics and Cognitive Computing that are baked in the oven to be Native on Kubernetes and Docker with Python, R, Scala, Java, C#, Go, Julia, C++ etc
- - A curated list of awesome Deep Reinforcement Learning resources
- - A curated list of awesome big data frameworks, ressources and other awesomeness
- - quality open datasets in public domains (on-going)
- - Probably the best curated list of data science software in Python
-
-
🎓 Courses
-
Code editors
-
Ukraine
- - VIM XXI века*;, отлично подходит для python, если использовать вместе с плагинами:
- Package Control - для быстрой и удобной работы с дополнениями
- Git - для работы с git
- Jedi - делает автодополнения для Python более умными и глубокими
- SublimeREPL - запускает `Read-eval-print loop` в соседней вкладке, удобно для пошаговой отладки кода
- Auto-PEP8 - приводит код в соответствие с каноном стиля *pep8*
- Python Checker - проверка кода
- - - Style Guide for Python Code.
-
-
LaTeX
-
Reddit
-
Python, IPython, Scikit-learn etc.
-
Ukraine
- - into-machine-learning)) with Python Jupyter notebook and scikit-learn
- - notebook на русском языке
- - learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
- - руководство по нюансам языка, мимо которых часто проходят новички (автор — Yasoob Khalid);
-
-
Algorithms
-
Linear Algebra
-
Reinforcement Learning
-
Ukraine
- David Silver's Reinforcement Learning Course (UCL, 2015)
- Reinforcement Learning: An Introduction (2nd Edition)
- CS294-112 - Deep Reinforcement Learning (UC Berkeley)
- Course website
- CS885 - Reinforcement Learning (UWaterloo), Spring 2018
- Introduction to Reinforcement Learning (Joelle Pineau @ Deep Learning Summer School 2016)
- Deep Reinforcement Learning (Pieter Abbeel @ Deep Learning Summer School 2016)
- Deep Reinforcement Learning ICML 2016 Tutorial (David Silver)
- Tutorial: Introduction to Reinforcement Learning with Function Approximation
- John Schulman - Deep Reinforcement Learning (4 Lectures)
- Deep Reinforcement Learning Slides @ NIPS 2016
- OpenAI Spinning Up
- dennybritz/reinforcement-learning
- CS 8803 - Reinforcement Learning (Georgia Tech)
- Introduction to Reinforcement Learning (Joelle Pineau @ Deep Learning Summer School 2016)
- Deep Reinforcement Learning (Pieter Abbeel @ Deep Learning Summer School 2016)
- Deep Reinforcement Learning ICML 2016 Tutorial (David Silver)
- John Schulman - Deep Reinforcement Learning (4 Lectures)
- Introduction to Reinforcement Learning (Joelle Pineau @ Deep Learning Summer School 2016)
- Deep Reinforcement Learning (Pieter Abbeel @ Deep Learning Summer School 2016)
- John Schulman - Deep Reinforcement Learning (4 Lectures)
-
-
🔹 Online Courses
- Machine Learning
- Machine Learning Crash Course with TensorFlow APIs - Google's fast-paced, practical introduction to machine learning
- Machine Learning
- Data Science
- Customer Analytics
- Calculus One
- Calculus: Single Variable Part 1
- Top 40 COMPLETELY FREE Coursera Artificial Intelligence and Computer Science Courses
- Бесплатные курсы для изучения навыков в области облачных технологий
- Бесплатные курсы для студентов
- Coursera Together: Free online learning during COVID-19
- Get Started with Data Science Foundations
- Машинное обучение - obucheniye)
- Machine Learning Foundations: A Case Study Approach
- Practical Predictive Analytics: Models and Methods
- Эконометрика - недельный курс от ВШЭ
- Introduction to Recommender Systems
- Machine Learning Engineer Nanodegree
- Data Analyst Nanodegree
- Intro to Machine Learning - to-end process of investigating data through a machine learning lens
- Data Science and Engineering with Spark
- Python Knowledge Map
- Technical Writing Courses
- Grow.Google
- LearnDigital.WithGoogle
- DeepLearning.AI
- Эконометрика - недельный курс от ВШЭ
- Introduction to Computational Thinking and Data Science
- Бесплатные курсы для изучения навыков в области облачных технологий
- Бесплатные курсы для студентов
- Get Started with Data Science Foundations
- Бесплатные курсы для изучения навыков в области облачных технологий
-
📌 Other
-
Ukraine
-
-
Neural Networks
-
Ukraine
- - week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision
- - книга по нейросетям и глубинному обучению ([:octocat: repo on github](https://github.com/mnielsen/neural-networks-and-deep-learning))
- - то иначе охарактеризовать Джеффри Хинтона (человека, стоящего у истоков современных подходов к обучению нейросетей с помощью алгоритма обратного распространения ошибки) сложно. Курс у него получился отличный»
- - week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision
- - книга по нейросетям и глубинному обучению ([:octocat: repo on github](https://github.com/mnielsen/neural-networks-and-deep-learning))
- - domain question answering;
-
-
📑 Open Datasets list
-
Theory of Probability and Mathematical Statistics
-
Big Data
-
Ukraine
- Big Data Specialization
- Big Data Fundamentals: Concepts, Drivers & Techniques
- Big Data: Principles and best practices of scalable realtime data systems
- Data Scientist vs Data Engineer
- Data Engineer VS Data Scientist
- Data Engineer VS Data Scientist
- Data Engineer VS Data Scientist
- Data Engineer VS Data Scientist
- Data Engineer VS Data Scientist
- Data Engineer VS Data Scientist
- Data Engineer VS Data Scientist
- Data Engineer VS Data Scientist
- Data Engineer VS Data Scientist
- Data Scientist vs Data Engineer
- Data Engineer VS Data Scientist
-
-
📚 Books
- - Peter Harrington
- - D.Barber (2015)
- - Boris Mirkin
- - Hal Daumé III ([another link](http://ciml.info))
- - Jiawei Han et. al.
- - M.J.Zaki, W.Meira Jr (2014)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Carl E. Rasmussen, Christopher K. I. Williams
- - Nada Lavrac, Saso Dzeroski
- - Nils J Nilsson (1997)
- - Tom Mitchell
- - D. Michie, D. J. Spiegelhalter
- - P. Flach (2012)
- - C.M.Bishop (2006)
- - Richard S. Sutton, Andrew G. Barto
- - перевод [Mining Massive Datasets](http://www.mmds.org/) - Jure Leskovec, Anand Rajaraman, Jeff Ullman
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
- Machine Learning Notebooks
- - D.Barber (2015)
- - Hal Daumé III ([another link](http://ciml.info))
- - Jiawei Han et. al.
- - M.J.Zaki, W.Meira Jr (2014)
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Carl E. Rasmussen, Christopher K. I. Williams
- - Nada Lavrac, Saso Dzeroski
- - Nils J Nilsson (1997)
- - D. Michie, D. J. Spiegelhalter
- - Richard S. Sutton, Andrew G. Barto
- - Charu C Aggarwal, Jiawei Han (eds.)
- - Charu C Aggarwal, Jiawei Han (eds.)
-
Causal Inference
-
Ukraine
- A Crash Course in Causality: Inferring Causal Effects from Observational Data
- JUDEA PEARL, MADELYN GLYMOUR, NICHOLAS P. JEWELL CAUSAL INFERENCE IN STATISTICS: A PRIMER
- Causal inference in statistics: An overview, 2009
- Powerful Concepts in Social Science
- MIT Statistics and Data Science Center, 2017
- Conference on Cognitive Computational Neuroscience 2019
- Machine Learning Summer School 2020
- Machine Learning Summer School 2013
- Causal Inference 3: Counterfactuals
- Causality for Machine Learning, Bernhard Schölkopf, 2019
- Elements of Causal Inference
- Causal Structure Learning,Christina Heinze-Deml, Marloes H. Maathuis, Nicolai Meinshausen, 2017
- JUDEA PEARL - CAUSALITY, 2nd Edition, 2009
- Causation, Prediction, and Search, Second Edition
- Learning DAGs with Continuous Optimization
- Causality in cognitive neuroscience: concepts, challenges, and distributional robustness
- Active Invariant Causal Prediction: Experiment Selection through Stability, Juan L Gamella, Christina Heinze-Deml, 2020
- Investigating Causal Relations by Econometric Models and Cross-spectral Methods, 1969
- Fast Greedy Equivalence Search (FGES) Algorithm for Continuous Variables
- Greedy Fast Causal Inference (GFCI) Algorithm for Continuous Variables
- Causal Decision Trees
- Discovery of Causal Rules Using Partial Association
- Causal Inference in Data Science From Prediction to Causation
- Powerful Concepts in Social Science
- Machine Learning Summer School 2013
- Powerful Concepts in Social Science
- JUDEA PEARL, MADELYN GLYMOUR, NICHOLAS P. JEWELL CAUSAL INFERENCE IN STATISTICS: A PRIMER
- JUDEA PEARL - CAUSALITY, 2nd Edition, 2009
- Causation, Prediction, and Search, Second Edition
- Causal Decision Trees
-
-
JavaScript-libraries for visualizing
-
▶️ Websites
-
Ukraine
-
-
Table of Contents
-
Machine Learning Map
-
🟥 YouTube
- Google Cloud Platform: AI Adventures
- Lviv Data Science Summer School 2020 lectures
- Samsung AI Innovation Campus - Russia
- Machine Learning University - samples/aws-machine-learning-university-accelerated-nlp)
- Grammarly AI-NLP Club
- Google Cloud Platform: AI Adventures
- Lviv Data Science Summer School 2020 lectures
- Samsung AI Innovation Campus - Russia
-
R
-
Conferences
-
International
- AAMAS, International Conference on Autonomous Agents and Multi-Agent Systems
- ICCBR, International Conference on Case-Based Reasoning
- SIAM, Society for Industrial and Applied Mathematics
- MDS, Conference on Mathematics of Data Science
- SIGKDD, Conference on Knowledge Discovery and Data Mining
- ACL, Association for Computational Linguistics
- EMNLP, Empirical Methods in Natural Language Processing
- IJCNLP, International Joint Conference on Natural Language Processing
- The Data Science Conference
- Strata Data & AI Conference
- useR!
- ICCBR, International Conference on Case-Based Reasoning
- ICML, International Conference on Machine Learning
- Open Data Science Conference
- SIAM, Society for Industrial and Applied Mathematics
-
North America
-
Europe
-
Ukraine
-
-
:octocat: GitHub Repositories
-
Ukraine
- 100-best-github-machine-learning
- курса «Математика и Python» - recommendations.md)|
- Литература для поступления в ШАД
- Machine learning cheat sheet - soulmachine (2015)|
- trekhleb, homemade-machine-learning
- ml-surveys
- Top-down learning path: Machine Learning for Software Engineers
- trekhleb, machine-learning-experiments
- 100-Days-Of-ML-Code
- data-science-blogs
- ml-course-msu
- trekhleb, machine-learning-octave
- Machine Learning Guide
- Machine_Learning_and_Deep_Learning
- Probabilistic Programming and Bayesian Methods for Hackers
- Machine Learning Notebooks
- MachineLearning_DeepLearning
-
-
Bayesian Statistics
-
Ukraine
-
-
Machine Learning System Design
-
Ukraine
-
-
Deploy Machine Learning Model to Production
-
Ukraine
- How to deploy Machine Learning models as a Microservice using FastAPI
- Почему Вы должны попробовать FastAPI?
- How to deploy Machine Learning models as a Microservice using FastAPI
- How to deploy Machine Learning models as a Microservice using FastAPI
- How to deploy Machine Learning models as a Microservice using FastAPI
- How to deploy Machine Learning models as a Microservice using FastAPI
- Почему Вы должны попробовать FastAPI?
-
-
Social Networks (chanels, chats, groups, etc.)
-
What's is the difference between _train, validation and test set_, in neural networks?
-
Ukraine
- Early stopping
- Code
- MNIST Database
- Code
- Code
- Code
- Understanding GRU Networks
- Code
- SMS Spam Collection Dataset
- Code
- Base text - **Alice in Wonderland**
- Formatted text of **Alice in Wonderland**
- implementation - character inputs as described in the original paper and improving [GauthierDmns' code](https://github.com/GauthierDmn/question_answering).
- Paper
- Used Articles
- Understanding GRU Networks
- Understanding GRU Networks
- Understanding GRU Networks
- Understanding GRU Networks
- Understanding GRU Networks
- Code
- Subset of MNIST
- SMS Spam Collection Dataset
- Code
- Base text - **Alice in Wonderland**
- Formatted text of **Alice in Wonderland**
- Paper
- Used Articles
-
Programming Languages
Categories
📚 Books
60
Awesome List
41
🔹 Online Courses
39
Theory of Probability and Mathematical Statistics
34
Causal Inference
30
Python, IPython, Scikit-learn etc.
28
What's is the difference between _train, validation and test set_, in neural networks?
28
🎓 Courses
26
📌 Other
24
Conferences
22
Reinforcement Learning
21
:octocat: GitHub Repositories
17
Linear Algebra
17
Big Data
15
Code editors
14
Neural Networks
12
LaTeX
9
R
9
Reddit
9
🟥 YouTube
8
Deploy Machine Learning Model to Production
7
Social Networks (chanels, chats, groups, etc.)
5
Algorithms
4
▶️ Websites
4
📑 Open Datasets list
3
Table of Contents
3
JavaScript-libraries for visualizing
3
Machine Learning Map
1
Machine Learning System Design
1
Bayesian Statistics
1
Sub Categories
Keywords
machine-learning
30
python
20
deep-learning
19
data-science
16
awesome
14
awesome-list
13
neural-network
8
artificial-intelligence
7
machine-learning-algorithms
6
nlp
6
tensorflow
5
data-mining
5
jupyter-notebook
5
datascience
4
scikit-learn
4
natural-language-processing
4
linear-algebra
4
gradient-boosting
3
logistic-regression
3
numpy
3
data-visualization
3
mathematics
3
reinforcement-learning
3
neural-networks
3
statistics
3
random-forest
3
data-analysis
3
classifier
3
tutorial
3
pytorch
3
deeplearning
3
algorithms
3
list
2
jupyter
2
gradient-boosting-machine
2
lightgbm
2
tutorials
2
papers
2
learning
2
xgboost
2
clustering
2
deepwalk
2
ml
2
graph-classification
2
decision-tree
2
classification-algorithm
2
unsupervised-learning
2
node2vec
2
coursera-machine-learning
2
time-series
2