Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome-sciml
Awesome-spatial-temporal-scientific-machine-learning-data-mining-packages. Julia and Python resources on spatial and temporal data mining. Mathematical epidemiology as an application. Most about package information. Data Sources Links and Epidemic Repos are also included.
https://github.com/Mathepia/awesome-sciml
Last synced: 4 days ago
JSON representation
-
<span id="head7">2.2. (Deep Learning based) Time Series Analysis</span>
- jdb78/pytorch-forecasting: Time series forecasting with PyTorch
- microsoft/forecasting: Time Series Forecasting Best Practices & Examples
- JuliaDynamics/ARFIMA.jl: Simulate stochastic timeseries that follow ARFIMA, ARMA, ARIMA, AR, etc. processes
- MaxBenChrist/awesome_time_series_in_python: This curated list contains python packages for time series analysis
- unit8co/darts: A python library for easy manipulation and forecasting of time series.
- AIStream-Peelout/flow-forecast: Deep learning PyTorch library for time series forecasting, classification, and anomaly detection (originally for flood forecasting).
- timeseriesAI/tsai: Time series Timeseries Deep Learning Machine Learning Pytorch fastai | State-of-the-art Deep Learning library for Time Series and Sequences in Pytorch / fastai
- tslearn-team/tslearn: A machine learning toolkit dedicated to time-series data
- salesforce/Merlion: Merlion: A Machine Learning Framework for Time Series Intelligence
- ourownstory/neural_prophet: NeuralProphet: A simple forecasting package
- sktime/sktime-dl: sktime companion package for deep learning based on TensorFlow
- IBM/TSML.jl: A package for time series data processing, classification, clustering, and prediction.
- alkaline-ml/pmdarima: A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
- zhouhaoyi/Informer2020: The GitHub repository for the paper "Informer" accepted by AAAI 2021.
- blue-yonder/tsfresh: Automatic extraction of relevant features from time series:
- TDAmeritrade/stumpy: STUMPY is a powerful and scalable Python library for modern time series analysis
- databrickslabs/tempo: API for manipulating time series on top of Apache Spark: lagged time values, rolling statistics (mean, avg, sum, count, etc), AS OF joins, downsampling, and interpolation
- alan-turing-institute/sktime: A unified framework for machine learning with time series
-
<span id="head3">1.1. Data Science</span>
-
<span id="head75"> Outlier Detection</span>
- OutlierDetectionJL
- rob-med/awesome-TS-anomaly-detection: List of tools & datasets for anomaly detection on time-series data.
- baggepinnen/MatrixProfile.jl: Time-series analysis using the Matrix profile in Julia
- jbytecode/LinRegOutliers: Direct and robust methods for outlier detection in linear regression
- yzhao062/pyod: A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
- cerlymarco/tsmoothie: A python library for time-series smoothing and outlier detection in a vectorized way.
- DHI/tsod: Anomaly Detection for time series data
-
<span id="head6">2.1. Statistics</span>
-
<span id="head8">2.3. Survival Analysis</span>
- Deep Learning for Survival Analysis
- sebp/scikit-survival: Survival analysis built on top of scikit-learn
- havakv/pycox: Survival analysis with PyTorch
- CamDavidsonPilon/lifelines: Survival analysis in Python
- chl8856/DeepHit: DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks
- jaredleekatzman/DeepSurv: DeepSurv is a deep learning approach to survival analysis.
- square/pysurvival: Open source package for Survival Analysis modeling
-
<span id="head9">2.4. Data Visualization</span>
-
- JuliaPlots
- discrete.knit
- GiovineItalia/Gadfly.jl: Crafty statistical graphics for Julia.
- queryverse/VegaLite.jl: Julia bindings to Vega-Lite
- JuliaPlots/UnicodePlots.jl: Unicode-based scientific plotting for working in the terminal
- JuliaGraphics/Colors.jl: Color manipulation utilities for Julia
- JuliaGraphics/ColorSchemes.jl: colorschemes, colormaps, gradients, and palettes
- GenieFramework/Stipple.jl: The reactive UI library for interactive data applications with pure Julia.
- theogf/Turkie.jl: Turing + Makie = Turkie
- rougier/scientific-visualization-book: An open access book on scientific visualization using python and matplotlib
-
Venn Diagrams
-
-
<span id="head11">3.1. Differentiation, Quadrature and Tensor computation</span>
-
<span id="head12">3.1.1. Auto Differentiation</span>
- JuliaDiff
- FluxML/Zygote.jl: Intimate Affection Auditor
- JuliaDiff/ForwardDiff.jl: Forward Mode Automatic Differentiation for Julia
- JuliaDiff/ReverseDiff.jl: Reverse Mode Automatic Differentiation for Julia
- JuliaDiff/AbstractDifferentiation.jl: An abstract interface for automatic differentiation.
- JuliaDiff/TaylorSeries.jl: A julia package for Taylor polynomial expansions in one and several independent variables.
- kailaix/ADCME.jl: Automatic Differentiation Library for Computational and Mathematical Engineering
- chakravala/Leibniz.jl: Tensor algebra utility library
- briochemc/F1Method.jl: F-1 method
- AMICI-dev/AMICI: Advanced Multilanguage Interface to CVODES and IDAS
- QuantEcon/SimpleDifferentialOperators.jl: Library for simple upwind finite differences
- maroba/findiff: Python package for numerical derivatives and partial differential equations in any number of dimensions.
-
<span id="head17">3.1.3. Matrix and Tensor computation</span>
- JuliaArrays
- JuliaMatrices
- RalphAS
- JuliaLinearAlgebra
- JuliaSparse
- scipy.sparse.linalg.eigs — SciPy v1.7.1 Manual
- JuliaArrays/StaticArrays.jl: Statically sized arrays for Julia
- JuliaArrays/ArrayInterface.jl: Designs for new Base array interface primitives, used widely through scientific machine learning (SciML) and other organizations
- JuliaArrays/StructArrays.jl: Efficient implementation of struct arrays in Julia
- JuliaArrays/LazyArrays.jl: Lazy arrays and linear algebra in Julia
- JuliaArrays/AxisArrays.jl: Performant arrays where each dimension can have a named axis with values
- JuliaArrays/OffsetArrays.jl: Fortran-like arrays with arbitrary, zero or negative starting indices.
- JuliaArrays/BlockArrays.jl: BlockArrays for Julia
- JuliaArrays/ArraysOfArrays.jl: Efficient storage and handling of nested arrays in Julia
- JuliaArrays/InfiniteArrays.jl: A Julia package for representing infinite-dimensional arrays
- JuliaArrays/FillArrays.jl: Julia package for lazily representing matrices filled with a single entry
- JuliaMatrices/BandedMatrices.jl: A Julia package for representing banded matrices
- JuliaMatrices/BlockBandedMatrices.jl: A Julia package for representing block-banded matrices and banded-block-banded matrices
- JuliaMatrices/SpecialMatrices.jl: Julia package for working with special matrix types.
- JuliaMatrices/InfiniteLinearAlgebra.jl: A Julia repository for linear algebra with infinite matrices
- JuliaLang/SparseArrays.jl: SparseArrays.jl is a Julia stdlib
- SciML/LabelledArrays.jl: Arrays which also have a label for each element for easy scientific machine learning (SciML)
- SciML/RecursiveArrayTools.jl: Tools for easily handling objects like arrays of arrays and deeper nestings in scientific machine learning (SciML) and other applications
- JuliaLinearAlgebra/MKL.jl: Intel MKL linear algebra backend for Julia
- JuliaLinearAlgebra/Octavian.jl: Multi-threaded BLAS-like library that provides pure Julia matrix multiplication
- JuliaGPU/GemmKernels.jl: Flexible and performant GEMM kernels in Julia
- MasonProtter/Gaius.jl: Divide and Conquer Linear Algebra
- nep-pack/NonlinearEigenproblems.jl: Nonlinear eigenvalue problems in Julia: Iterative methods and benchmarks
- SciML/LinearSolve.jl: LinearSolve.jl: High-Performance Unified Linear Solvers
- JuliaLinearAlgebra/Arpack.jl: Julia Wrappers for the arpack-ng Fortran library
- JuliaLinearAlgebra/ArnoldiMethod.jl: Implicitly Restarted Arnoldi Method, natively in Julia
- Jutho/KrylovKit.jl: Krylov methods for linear problems, eigenvalues, singular values and matrix functions
- pablosanjose/QuadEig.jl: Julia implementation of the `quadeig` algorithm for the solution of quadratic matrix pencils
- JuliaApproximation/SpectralMeasures.jl: Julia package for finding the spectral measure of structured self adjoint operators
- JuliaInv/KrylovMethods.jl: Simple and fast Julia implementation of Krylov subspace methods for linear systems.
- JuliaSmoothOptimizers/Krylov.jl: A Julia Basket of Hand-Picked Krylov Methods
- JuliaLinearAlgebra/IterativeSolvers.jl: Iterative algorithms for solving linear systems, eigensystems, and singular value problems
- tjdiamandis/RandomizedPreconditioners.jl
- JuliaLinearAlgebra/RecursiveFactorization.jl
- tpapp/SpectralKit.jl: Building blocks of spectral methods for Julia.
- JuliaSparse/Pardiso.jl: Calling the PARDISO library from Julia
- JuliaSparse/MKLSparse.jl: Make available to Julia the sparse functionality in MKL
- JuliaLang/SuiteSparse.jl: Development of SuiteSparse.jl, which ships as part of the Julia standard library.
- emmt/LazyAlgebra.jl: A Julia package to extend the notion of vectors and matrices
- JuliaSmoothOptimizers/LinearOperators.jl: Linear Operators for Julia
- kul-optec/AbstractOperators.jl: Abstract operators for large scale optimization in Julia
- matthieugomez/InfinitesimalGenerators.jl: A set of tools to work with Markov Processes
- hakkelt/FunctionOperators.jl: Julia package that allows writing code close to mathematical notation memory-efficiently.
- andreasvarga/MatrixEquations.jl: Solution of Lyapunov, Sylvester and Riccati matrix equations using Julia
- MichielStock/Kronecker.jl: A general-purpose toolbox for efficient Kronecker-based algebra.
- JuliaApproximation/ApproxFun.jl: Julia package for function approximation
- JuliaMatrices/BandedMatrices.jl: A Julia package for representing banded matrices
- JuliaMatrices/SpecialMatrices.jl: Julia package for working with special matrix types.
- JuliaMatrices/InfiniteLinearAlgebra.jl: A Julia repository for linear algebra with infinite matrices
- Jutho/LinearMaps.jl: A Julia package for defining and working with linear maps, also known as linear transformations or linear operators acting on vectors. The only requirement for a LinearMap is that it can act on a vector (by multiplication) efficiently.
- mcabbott/Tullio.jl: ⅀
- JuliaLang/SparseArrays.jl: SparseArrays.jl is a Julia stdlib
- scikit-hep/awkward-1.0: Manipulate JSON-like data with NumPy-like idioms.
- JuliaLang/SuiteSparse.jl: Development of SuiteSparse.jl, which ships as part of the Julia standard library.
- JuliaMatrices/BlockBandedMatrices.jl: A Julia package for representing block-banded matrices and banded-block-banded matrices
-
<span id="head23">3.1.4.Platforms, CPU, GPU and TPU</span>
-
<span id="head14">3.1.2. Quadrature</span>
- SciML/Quadrature.jl: A common interface for quadrature and numerical integration for the SciML scientific machine learning organization
- SciML/SymbolicNumericIntegration.jl
- JuliaMath/HCubature.jl: pure-Julia multidimensional h-adaptive integration
- JuliaMath/Cubature.jl: One- and multi-dimensional adaptive integration routines for the Julia language
- giordano/Cuba.jl: Library for multidimensional numerical integration with four independent algorithms: Vegas, Suave, Divonne, and Cuhre.
- JuliaApproximation/FastGaussQuadrature.jl: Julia package for Gaussian quadrature
- machakann/DoubleExponentialFormulas.jl: One-dimensional numerical integration using the double exponential formula
- JuliaApproximation/SingularIntegralEquations.jl: Julia package for solving singular integral equations
- JuliaGNI/GeometricIntegrators.jl: Geometric Numerical Integration in Julia
- ranjanan/MonteCarloIntegration.jl: A package for multi-dimensional integration using monte carlo methods
- theogf/BayesianQuadrature.jl: Is there anything we can't make Bayesian?
- s-baumann/BayesianIntegral.jl: Bayesian Integration of functions
- QuantEcon/Expectations.jl: Expectation operators for Distributions.jl objects
- JuliaMath/QuadGK.jl: adaptive 1d numerical Gauss–Kronrod integration in Julia
- SciML/Quadrature.jl: A common interface for quadrature and numerical integration for the SciML scientific machine learning organization
-
-
<span id="head24">3.2. Optimization</span>
-
<span id="head23">3.1.4.Platforms, CPU, GPU and TPU</span>
- JuliaOpt
- JuliaNLSolvers
- Process Systems and Operations Research Laboratory
- JuliaFirstOrder
- SciML/GalacticOptim.jl: Local, global, and beyond optimization for scientific machine learning (SciML)
- JuliaNLSolvers/Optim.jl: Optimization functions for Julia
- JuliaOpt/NLopt.jl: Package to call the NLopt nonlinear-optimization library from the Julia language
- robertfeldt/BlackBoxOptim.jl: Black-box optimization for Julia
- jump-dev/MathOptInterface.jl: An abstraction layer for mathematical optimization solvers.
- tpapp/MultistartOptimization.jl: Multistart optimization methods in Julia.
- bbopt/NOMAD.jl: Julia interface to the NOMAD blackbox optimization software
- NicolasL-S/SpeedMapping.jl: General fixed point mapping acceleration and optimization in Julia
- JuliaManifolds/Manopt.jl: Optimization on Manifolds in Julia
- JuliaOpt/NLopt.jl: Package to call the NLopt nonlinear-optimization library from the Julia language
- SciML/GalacticOptim.jl: Local, global, and beyond optimization for scientific machine learning (SciML)
-
3.2.5. First Order Methods
-
<span id="head25">3.2.1. Metaheuristic</span>
- jmejia8/Metaheuristics.jl: High performance metaheuristics for optimization purely coded in Julia.
- ac-tuwien/MHLib.jl: MHLib.jl - A Toolbox for Metaheuristics and Hybrid Optimization Methods in Julia
- guofei9987/scikit-opt: Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
- scikit-optimize/scikit-optimize: Sequential model-based optimization with a `scipy.optimize` interface
- ac-tuwien/pymhlib: pymhlib - A Toolbox for Metaheuristics and Hybrid Optimization Methods
- cvxpy/cvxpy: A Python-embedded modeling language for convex optimization problems.
- coin-or/pulp: A python Linear Programming API
-
<span id="head26">3.2.2. Evolution Stragegy</span>
- wildart/Evolutionary.jl: Evolutionary & genetic algorithms for Julia
- d9w/Cambrian.jl: An Evolutionary Computation framework
- jbrea/CMAEvolutionStrategy.jl
- AStupidBear/GCMAES.jl: Gradient-based Covariance Matrix Adaptation Evolutionary Strategy for Real Blackbox Optimization
- itsdfish/DifferentialEvolutionMCMC.jl: A Julia package for Differential Evolution MCMC
-
<span id="head27">3.2.3. Genetic Algorithms</span>
-
<span id="head28">3.2.4. Nonconvex</span>
-
-
<span id="head29">3.3. Optimal Control</span>
-
3.2.5. First Order Methods
- mintOC
- GAMS Documentation Center
- YALMIP
- Solver Manuals
- JuliaControl
- eleurent/phd-bibliography: References on Optimal Control, Reinforcement Learning and Motion Planning
- jump-dev/JuMP.jl: Modeling language for Mathematical Optimization (linear, mixed-integer, conic, semidefinite, nonlinear)
- pulsipher/InfiniteOpt.jl: An intuitive modeling interface for infinite-dimensional optimization problems.
- GAMS-dev/gams.jl: A MathOptInterface Optimizer to solve JuMP models using GAMS
- Pyomo/pyomo: An object-oriented algebraic modeling language in Python for structured optimization problems.
- martinbiel/StochasticPrograms.jl: Julia package for formulating and analyzing stochastic recourse models.
- odow/SDDP.jl: Stochastic Dual Dynamic Programming in Julia
- PSORLab/EAGO.jl: A development environment for robust and global optimization
- JuliaSmoothOptimizers/PDENLPModels.jl: A NLPModel API for optimization problems with PDE-constraints
- JuliaMPC/NLOptControl.jl: nonlinear control optimization tool
- python-control/python-control: The Python Control Systems Library is a Python module that implements basic operations for analysis and design of feedback control systems.
- Shunichi09/PythonLinearNonlinearControl: PythonLinearNonLinearControl is a library implementing the linear and nonlinear control theories in python.
- OpenOCL/OpenOCL: Open Optimal Control Library for Matlab. Trajectory Optimization and non-linear Model Predictive Control (MPC) toolbox.
- jkoendev/optimal-control-literature-software: List of literature and software for optimal control and numerical optimization.
- pulsipher/InfiniteOpt.jl: An intuitive modeling interface for infinite-dimensional optimization problems.
-
-
<span id="head30">3.4. Bayesian Inference</span>
-
3.2.5. First Order Methods
- StatisticalRethinkingJulia
- StanJulia
- The Turing Language
- cscherrer/Soss.jl: Probabilistic programming via source rewriting
- probcomp/Gen.jl: A general-purpose probabilistic programming system with programmable inference
- StatisticalRethinkingJulia/StatisticalRethinking.jl: Julia package with selected functions in the R package `rethinking`. Used in the SR2... projects.
- pymc-devs/pymc: Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara
- pyro-ppl/pyro: Deep universal probabilistic programming with Python and PyTorch
- tensorflow/probability: Probabilistic reasoning and statistical analysis in TensorFlow
- jmschrei/pomegranate: Fast, flexible and easy to use probabilistic modelling in Python.
-
<span id="head35">3.4.5. Gaussion, non-Gaussion and Kernel</span>
- Gaussian Processes for Machine Learning in Julia
- JuliaRobotics
- JuliaStats/KernelDensity.jl: Kernel density estimators for Julia
- JuliaRobotics/KernelDensityEstimate.jl: Kernel Density Estimate with product approximation using multiscale Gibbs sampling
- theogf/AugmentedGaussianProcesses.jl: Gaussian Process package based on data augmentation, sparsity and natural gradients
- JuliaGaussianProcesses/TemporalGPs.jl: Fast inference for Gaussian processes in problems involving time
- aterenin/SparseGaussianProcesses.jl: A Julia implementation of sparse Gaussian processes via path-wise doubly stochastic variational inference.
- PieterjanRobbe/GaussianRandomFields.jl: A package for Gaussian random field generation in Julia
- JuliaGaussianProcesses/Stheno.jl: Probabilistic Programming with Gaussian processes in Julia
- STOR-i/GaussianProcesses.jl: A Julia package for Gaussian Processes
- cornellius-gp/gpytorch: A highly efficient and modular implementation of Gaussian Processes in PyTorch
- GPflow/GPflow: Gaussian processes in TensorFlow
- SheffieldML/GPy: Gaussian processes framework in python
- Laboratory of Applied Mathematical Programming and Statistics
-
<span id="head31">3.4.1. MCMC</span>
- mauro3/KissMCMC.jl: Keep it simple, stupid, MCMC
- BigBayes/SGMCMC.jl: Stochastic Gradient Markov Chain Monte Carlo and Optimisation
- tpapp/DynamicHMC.jl: Implementation of robust dynamic Hamiltonian Monte Carlo methods (NUTS) in Julia.
- madsjulia/AffineInvariantMCMC.jl: Affine Invariant Markov Chain Monte Carlo (MCMC) Ensemble sampler
- TuringLang/EllipticalSliceSampling.jl: Julia implementation of elliptical slice sampling.
- TuringLang/NestedSamplers.jl: Implementations of single and multi-ellipsoid nested sampling
- bat/UltraNest.jl: Julia wrapper for UltraNest: advanced nested sampling for model comparison and parameter estimation
- AdamCobb/hamiltorch: PyTorch-based library for Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) and inference in Bayesian neural networks
- jeremiecoullon/SGMCMCJax: Lightweight library of stochastic gradient MCMC algorithms written in JAX.
- joshspeagle/dynesty: Dynamic Nested Sampling package for computing Bayesian posteriors and evidences
- JohannesBuchner/UltraNest: Fit and compare complex models reliably and rapidly. Advanced nested sampling.
- dfm/emcee: The Python ensemble sampling toolkit for affine-invariant MCMC
-
<span id="head32">3.4.2. Approximate Bayesian Computation (ABC)</span>
- tanhevg/GpABC.jl
- marcjwilliams1/ApproxBayes.jl: Approximate Bayesian Computation (ABC) algorithms for likelihood free inference in julia
- francescoalemanno/KissABC.jl: Pure julia implementation of Multiple Affine Invariant Sampling for efficient Approximate Bayesian Computation
- sbi-benchmark/sbibm: Simulation-based inference benchmark
- elfi-dev/elfi: ELFI - Engine for Likelihood-Free Inference
- eth-cscs/abcpy: ABCpy package
- mackelab/sbi: Simulation-based inference in PyTorch
- ICB-DCM/pyABC: distributed, likelihood-free inference
- mackelab/sbi: Simulation-based inference in PyTorch
- pints-team/pints: Probabilistic Inference on Noisy Time Series
-
<span id="head33">3.4.3. Data Assimilation (SMC, particles filter)</span>
- Alexander-Barth/DataAssim.jl: Implementation of various ensemble Kalman Filter data assimilation methods in Julia
- baggepinnen/LowLevelParticleFilters.jl: Simple particle/kalman filtering, smoothing and parameter estimation
- JuliaGNSS/KalmanFilters.jl: Various Kalman Filters: KF, UKF, AUKF and their Square root variant
- FRBNY-DSGE/StateSpaceRoutines.jl: Package implementing common state-space routines.
- simsurace/FeedbackParticleFilters.jl: A Julia package that provides (feedback) particle filters for nonlinear stochastic filtering and data assimilation problems
- mjb3/DiscretePOMP.jl: Bayesian inference for Discrete state-space Partially Observed Markov Processes in Julia. See the docs:
- nchopin/particles: Sequential Monte Carlo in python
- rlabbe/filterpy: Python Kalman filtering and optimal estimation library. Implements Kalman filter, particle filter, Extended Kalman filter, Unscented Kalman filter, g-h (alpha-beta), least squares, H Infinity, smoothers, and more. Has companion book 'Kalman and Bayesian Filters in Python'.
- tingiskhan/pyfilter: Particle filtering and sequential parameter inference in Python
- CliMA/EnsembleKalmanProcesses.jl: Implements Optimization and approximate uncertainty quantification algorithms, Ensemble Kalman Inversion, and Ensemble Kalman Processes.
-
<span id="head34">3.4.4. Variational Inference</span>
-
<span id="head36">3.4.6. Bayesian Optimization</span>
- SciML/Surrogates.jl: Surrogate modeling and optimization for scientific machine learning (SciML)
- jbrea/BayesianOptimization.jl: Bayesian optimization for Julia
- baggepinnen/Hyperopt.jl: Hyperparameter optimization in Julia.
- pytorch/botorch: Bayesian optimization in PyTorch
- optuna/optuna: A hyperparameter optimization framework
- huawei-noah/HEBO: Bayesian optimisation library developped by Huawei Noah's Ark Library
- fmfn/BayesianOptimization: A Python implementation of global optimization with gaussian processes.
-
<span id="head37">3.4.7. Information theory</span>
- RafaelArutjunjan/InformationGeometry.jl: Methods for computational information geometry
- kzahedi/Shannon.jl: Entropy, Mutual Information, KL-Divergence related to Shannon's information theory and functions to binarize data
- gragusa/Divergences.jl: A Julia package for evaluation of divergences between distributions
- Tchanders/InformationMeasures.jl: Entropy, mutual information and higher order measures from information theory, with various estimators and discretisation methods.
- JuliaDynamics/TransferEntropy.jl: Transfer entropy (conditional mutual information) estimators for the Julia language
- cynddl/Discreet.jl: A Julia package to estimate discrete entropy and mutual information
-
<span id="head38">3.4.8. Uncertanty</span>
- uncertainty-toolbox/uncertainty-toolbox: A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization
- JuliaPhysics/Measurements.jl: Error propagation calculator and library for physical measurements. It supports real and complex numbers with uncertainty, arbitrary precision calculations, operations with arrays, and numerical integration.
-
<span id="head39">3.4.9. Casual</span>
- zenna/Omega.jl: Causal, Higher-Order, Probabilistic Programming
- mschauer/CausalInference.jl: Causal inference, graphical models and structure learning with the PC algorithm.
- JuliaDynamics/CausalityTools.jl: Algorithms for causal inference and the detection of dynamical coupling from time series, and for approximation of the transfer operator and invariant measures.
- rguo12/awesome-causality-algorithms: An index of algorithms for learning causality with data
- JuliaDynamics/CausalityTools.jl: Algorithms for causal inference and the detection of dynamical coupling from time series, and for approximation of the transfer operator and invariant measures.
-
<span id="head40">3.4.10. Sampling</span>
- MrUrq/LatinHypercubeSampling.jl: Julia package for the creation of optimised Latin Hypercube Sampling Plans
- SciML/QuasiMonteCarlo.jl: Lightweight and easy generation of quasi-Monte Carlo sequences with a ton of different methods on one API for easy parameter exploration in scientific machine learning (SciML)
-
-
<span id="head41">3.5. Machine Learning and Deep Learning</span>
-
<span id="head42">3.5.1. Machine Learning</span>
- JuliaML
- JuliaAI
- alan-turing-institute/MLJ.jl: A Julia machine learning framework
- Evovest/EvoTrees.jl: Boosted trees in Julia
- madeleineudell/LowRankModels.jl: LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.
- JuliaAI/MLJLinearModels.jl: Generalized Linear Regressions Models (penalized regressions, robust regressions, ...)
- gerdm/pknn.jl: Probabilistic k-nearest neighbours
- IBM/AutoMLPipeline.jl: A package that makes it trivial to create and evaluate machine learning pipeline architectures.
- automl/auto-sklearn: Automated Machine Learning with scikit-learn
- h2oai/h2o-3: H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
- pycaret/pycaret: An open-source, low-code machine learning library in Python
- nubank/fklearn: fklearn: Functional Machine Learning
- wecarsoniv/augmented-pca: Repository for the AugmentedPCA Python package.
- snorkel-team/snorkel: A system for quickly generating training data with weak supervision
- lk-geimfari/mimesis: Mimesis is a high-performance fake data generator for Python, which provides data for a variety of purposes in a variety of languages.
- alan-turing-institute/MLJ.jl: A Julia machine learning framework
- scikit-learn: machine learning in Python — scikit-learn 1.0.1 documentation
-
<span id="head44">3.5.3. Reinforce Learning</span>
- JuliaPOMDP
- JuliaReinforcementLearning
- ray-project/ray: An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.
- tensorlayer/tensorlayer: Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
- pfnet/pfrl: PFRL: a PyTorch-based deep reinforcement learning library
-
<span id="head40">3.4.10. Sampling</span>
-
<span id="head43">3.5.2. Deep Learning</span>
- FluxML/Flux.jl: Relax! Flux is the ML library that doesn't make you tensor
- sdobber/FluxArchitectures.jl: Complex neural network examples for Flux.jl
- catalyst-team/catalyst: Accelerated deep learning R&D
- murufeng/awesome_lightweight_networks: MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐
- pytorch/pytorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration
- tensorflow/tensorflow: An Open Source Machine Learning Framework for Everyone
- denizyuret/Knet.jl: Koç University deep learning framework.
- google/jax: Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
-
<span id="head45">3.5.4. GNN</span>
- CarloLucibello/GraphNeuralNetworks.jl: Graph Neural Networks in Julia
- FluxML/GeometricFlux.jl: Geometric Deep Learning for Flux
- pyg-team/pytorch_geometric: Graph Neural Network Library for PyTorch
- benedekrozemberczki/pytorch_geometric_temporal: PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models (CIKM 2021)
- dmlc/dgl: Python package built to ease deep learning on graph, on top of existing DL frameworks.
- THUDM/cogdl: CogDL: An Extensive Toolkit for Deep Learning on Graphs
- CarloLucibello/GraphNeuralNetworks.jl: Graph Neural Networks in Julia
-
<span id="head46">3.5.5. Transformer</span>
-
<span id="head48">3.5.7. Neural Tangent</span>
-
<span id="head49">3.5.8. Visulization</span>
- ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network: Tools to Design or Visualize Architecture of Neural Network
- julrog/nn_vis: A project for processing neural networks and rendering to gain insights on the architecture and parameters of a model through a decluttered representation.
- dair-ai/ml-visuals: 🎨 ML Visuals contains figures and templates which you can reuse and customize to improve your scientific writing.
-
Semi-supervised Learning
-
<span id="head47">3.5.6. Transfer Learning</span>
-
-
<span id="head50">3.6. Probablistic Machine Learning and Deep Learning</span>
-
Semi-supervised Learning
- Probabilistic machine learning
- mcosovic/FactorGraph.jl: The FactorGraph package provides the set of different functions to perform inference over the factor graph with continuous or discrete random variables using the belief propagation algorithm.
- stefan-m-lenz/BoltzmannMachines.jl: A Julia package for training and evaluating multimodal deep Boltzmann machines
- biaslab/ReactiveMP.jl: Julia package for automatic Bayesian inference on a factor graph with reactive message passing
- OATML/bdl-benchmarks: Bayesian Deep Learning Benchmarks
- pgmpy/pgmpy: Python Library for learning (Structure and Parameter) and inference (Probabilistic and Causal) in Bayesian Networks.
- scikit-learn-contrib/imbalanced-learn: A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning
- BIASlab
- biaslab/ReactiveMP.jl: Julia package for automatic Bayesian inference on a factor graph with reactive message passing
- thu-ml/zhusuan: A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow
-
<span id="head53">3.6.3. VAE</span>
- Variational Autoencoders — Pyro Tutorials 1.7.0 documentation
- AntixK/PyTorch-VAE: A Collection of Variational Autoencoders (VAE) in PyTorch.
- timsainb/tensorflow2-generative-models: Implementations of a number of generative models in Tensorflow 2. GAN, VAE, Seq2Seq, VAEGAN, GAIA, Spectrogram Inversion. Everything is self contained in a jupyter notebook for easy export to colab.
- altosaar/variational-autoencoder: Variational autoencoder implemented in tensorflow and pytorch (including inverse autoregressive flow)
- subinium/Pytorch-AutoEncoders at pythonrepo.com
- Ritvik19/pyradox-generative at pythonrepo.com
- altosaar/variational-autoencoder: Variational autoencoder implemented in tensorflow and pytorch (including inverse autoregressive flow)
-
3.6.4 BNN
-
<span id="head51">3.6.1. GAN</span>
-
<span id="head52">3.6.2. Normilization Flows</span>
- TuringLang/Bijectors.jl: Implementation of normalising flows and constrained random variable transformations
- slimgroup/InvertibleNetworks.jl: A Julia framework for invertible neural networks
- janosh/awesome-normalizing-flows: A list of awesome resources on normalizing flows.
- RameenAbdal/StyleFlow: StyleFlow: Attribute-conditioned Exploration of StyleGAN-generated Images using Conditional Continuous Normalizing Flows (ACM TOG 2021)
-
-
<span id="head54">3.7. Differential Equations and Scientific Computation</span>
-
3.6.4 BNN
- SciML Open Source Scientific Machine Learning
- JuliaDynamics
- BioJulia
- nathanaelbosch/ProbNumDiffEq.jl: Probabilistic ODE Solvers via Bayesian Filtering and Smoothing
- PerezHz/TaylorIntegration.jl: ODE integration using Taylor's method, and more, in Julia
- gideonsimpson/BasicMD.jl: A collection of basic routines for Molecular Dynamics simulations implemented in Julia
- ProbNum — probnum 0.1 documentation
-
<span id="head55">3.7.1. Partial differential equation</span>
- Gridap
- JuliaFEM
- JuliaPDE/SurveyofPDEPackages: Survey of the packages of the Julia ecosystem for solving partial differential equations
- vavrines/Kinetic.jl: Universal modeling and simulation of fluid dynamics upon machine learning
- kailaix/AdFem.jl: Innovative, efficient, and computational-graph-based finite element simulator for inverse modeling
- SciML/ExponentialUtilities.jl: Utility functions for exponential integrators for the SciML scientific machine learning ecosystem
- trixi-framework/Trixi.jl: Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs in Julia
- Ferrite-FEM/Ferrite.jl: Finite element toolbox for Julia
- DedalusProject/dedalus: A flexible framework for solving PDEs with modern spectral methods.
- SciML/DiffEqOperators.jl: Linear operators for discretizations of differential equations and scientific machine learning (SciML)
- ranocha/SummationByPartsOperators.jl: A Julia library of summation-by-parts (SBP) operators used in finite difference, Fourier pseudospectral, continuous Galerkin, and discontinuous Galerkin methods to get provably stable semidiscretizations, paying special attention to boundary conditions.
-
3.7.2 Fractional Differential and Calculus
- SciFracX
- SciFracX/FractionalDiffEq.jl: FractionalDiffEq.jl: A Julia package aiming at solving Fractional Differential Equations using high performance numerical methods
- SciFracX/FractionalSystems.jl: Fractional order modeling and analysis in Julia.
- SciFracX/FractionalCalculus.jl: FractionalCalculus.jl: A Julia package for high performance, fast convergence and high precision numerical fractional calculus computing.
- SciFracX/FractionalTransforms.jl: FractionalTransforms.jl: A Julia package aiming at providing fractional order transforms with high performance.
-
-
<span id="head56">3.8. Scientific Machine Learning (Differential Equation and ML)</span>
-
<span id="head58">3.8.2. Physical Informed Neural Netwworks</span>
- Predictive Intelligence Lab
- SciML/NeuralPDE.jl: Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
- lululxvi/deepxde: Deep learning library for solving differential equations and more
- sciann/sciann: Deep learning for Engineers - Physics Informed Deep Learning
-
3.7.2 Fractional Differential and Calculus
-
<span id="head57">3.8.1. Universal Differential Equations. (Neural differential equations)</span>
- SciML/DiffEqFlux.jl: Universal neural differential equations with O(1) backprop, GPUs, and stiff+non-stiff DE solvers, demonstrating scientific machine learning (SciML) and physics-informed machine learning methods
- avik-pal/FastDEQ.jl: Deep Equilibrium Networks (but faster!!!)
- Crown421/GPDiffEq.jl
- DiffEqML/torchdyn: A PyTorch based library for all things neural differential equations and implicit neural models.
- rtqichen/torchdiffeq: Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.
- patrick-kidger/diffrax at zzun.app
- avik-pal/FastDEQ.jl: Deep Equilibrium Networks (but faster!!!)
-
<span id="head59">3.8.3. Neural Operator</span>
-
-
<span id="head77">3.11. Optimal Transportation</span>
-
<span id="head66">3.10.2. Global Sensitivity Anylysis</span>
-
-
<span id="head81">3.12. Agents, Graph and Networks</span>
-
<span id="head66">3.10.2. Global Sensitivity Anylysis</span>
- Computational Modeling Software Frameworks
- briatte/awesome-network-analysis: A curated list of awesome network analysis resources.
- Julia Math
- JuliaApproximation
- JuliaDynamics/Agents.jl: Agent-based modeling framework in Julia
- projectmesa/mesa: Mesa is an agent-based modeling framework in Python
- networkx/networkx: Network Analysis in Python
- GiulioRossetti/ndlib: Network Diffusion Library - (for NetworkX and iGraph)
- Welcome to Epidemics on Networks’s documentation! — Epidemics on Networks 1.2rc1 documentation
- 寻找人类传播行为的基因 — 计算传播学
-
-
<span id="head69">4.1. Symbolic Computation</span>
-
<span id="head66">3.10.2. Global Sensitivity Anylysis</span>
- JuliaSymbolics
- JuliaSymbolics/Symbolics.jl: A fast and modern CAS for a fast and modern language.
- JuliaPy/SymPy.jl: Julia interface to SymPy via PyCall
- jlapeyre/Symata.jl: language for symbolic mathematics
- wbhart/AbstractAlgebra.jl: Generic abstract algebra functionality in pure Julia (no C dependencies)
- rjrosati/SymbolicTensors.jl: Manipulate tensors symbolically in Julia! Currently needs a SymPy dependency, but work is ongoing to change the backend to SymbolicUtils.jl
- sympy/sympy: A computer algebra system written in pure Python
-
-
4.4 Polynomials
-
<span id="head72">4.3.2. Interpolations and Approximations</span>
- Detexify LaTeX handwritten symbol recognition
- Jekyll • Simple, blog-aware, static sites | Transform your plain text into static websites and blogs
- 一个傻瓜式构建可视化 web的 Python 神器 -- streamlit
- Shields.io: Quality metadata badges for open source projects
- JuliaMath/Polynomials.jl: Polynomial manipulations in Julia
- JuliaDocs/Documenter.jl: A documentation generator for Julia.
- chriskiehl/Gooey: Turn (almost) any Python command line program into a full GUI application with one line
- mossr/julia-mono-listings: LaTeX listings style for Julia and Unicode support for the JuliaMono font
- wg030/jlcode: A latex package for displaying Julia code using the listings package. The package supports pdftex, luatex and xetex for compilation.
- davibarreira/NotebookToLaTeX.jl: A Julia package for converting your Pluto and Jupyter Notebooks into beautiful Latex.
- facebook/docusaurus: Easy to maintain open source documentation websites.
- tlienart/Franklin.jl: (yet another) static site generator. Simple, customisable, fast, maths with KaTeX, code evaluation, optional pre-rendering, in Julia.
- streamlit/streamlit: Streamlit — The fastest way to build data apps in Python
- gradio-app/gradio: Create UIs for your machine learning model in Python in 3 minutes
- abhisheknaiidu/awesome-github-profile-readme: 😎 A curated list of awesome GitHub Profile READMEs 📝
- anuraghazra/github-readme-stats: Dynamically generated stats for your github readmes
- be5invis/Sarasa-Gothic: Sarasa Gothic / 更纱黑体 / 更紗黑體 / 更紗ゴシック / 사라사 고딕
- ButterAndButterfly/GithubTools: 目标是创建会刷新的ReadMe首页! 在这里,你可以得到Github star/fork总数图标, 项目star历史曲线,star数最多的前N个Repo信息...
-
-
<span id="head70">4.3. Roots, Intepolations</span>
-
<span id="head72">4.3.2. Interpolations and Approximations</span>
- PumasAI/DataInterpolations.jl: A library of data interpolation and smoothing functions
- JuliaMath/Interpolations.jl: Fast, continuous interpolation of discrete datasets in Julia
- kbarbary/Dierckx.jl: Julia package for 1-d and 2-d splines
- sisl/GridInterpolations.jl: Multidimensional grid interpolation in arbitrary dimensions
- floswald/ApproXD.jl: B-splines and linear approximators in multiple dimensions for Julia
- sostock/BSplines.jl: A Julia package for working with B-splines
- stevengj/FastChebInterp.jl: fast multidimensional Chebyshev interpolation and regression in Julia
- jipolanco/BSplineKit.jl: A collection of B-spline tools in Julia
- NFFT/ANOVAapprox.jl: Approximation Package for High-Dimensional Functions in Julia
- stevengj/FastChebInterp.jl: fast multidimensional Chebyshev interpolation and regression in Julia
- PumasAI/DataInterpolations.jl: A library of data interpolation and smoothing functions
-
<span id="head71">4.3.1. Roots</span>
- SciML/NonlinearSolve.jl: High-performance and differentiation-enabled nonlinear solvers
- SciML/SciMLNLSolve.jl: Nonlinear solver bindings for the SciML Interface
- JuliaMath/Roots.jl: Root finding functions for Julia
- JuliaNLSolvers/NLsolve.jl: Julia solvers for systems of nonlinear equations and mixed complementarity problems
- sglyon/MINPACK.jl: Wrapper for cminpack multivariate root finding routines
- PolynomialRoots · Julia Packages
-
-
<span id="head4"> Smoothing</span>
- viraltux/Smoothers.jl: Collection of basic smoothers and smoothing related applications
- LAMPSPUC/StateSpaceModels.jl: StateSpaceModels.jl is a Julia package for time-series analysis using state-space models.
- miguelraz/StagedFilters.jl
- JuliaDSP/DSP.jl: Filter design, periodograms, window functions, and other digital signal processing functionality
- konkam/FeynmanKacParticleFilters.jl: Particle filtering using the Feynman-Kac formalism
- mschauer/Kalman.jl: Flexible filtering and smoothing in Julia
- JuliaStats/Loess.jl: Local regression, so smooooth!
-
<span id="head76">2.5. GLM</span>
-
<span id="head64">3.10. Model Evaluation</span>
-
<span id="head66">3.10.2. Global Sensitivity Anylysis</span>
- SciML/DiffEqSensitivity.jl: A component of the DiffEq ecosystem for enabling sensitivity analysis for scientific machine learning (SciML). Optimize-then-discretize, discretize-then-optimize, and more for ODEs, SDEs, DDEs, DAEs, etc.
- lrennels/GlobalSensitivityAnalysis.jl: Julia implementations of global sensitivity analysis methods.
- SciML/GlobalSensitivity.jl
- SALib/SALib: Sensitivity Analysis Library in Python. Contains Sobol, Morris, FAST, and other methods.
-
<span id="head65">3.10.1. Structure Idendification</span>
-
-
<span id="head60">3.9. Data Driven Methods (Equation Searching Methods)</span>
-
<span id="head63">3.9.3. DMD (Dynamic Mode Decomposition)</span>
- foldfelis/NeuralOperators.jl: learning the solution operator for partial differential equations in pure Julia.
- mathLab/PyDMD: Python Dynamic Mode Decomposition
- foldfelis/NeuralOperators.jl: learning the solution operator for partial differential equations in pure Julia.
- foldfelis/NeuralOperators.jl: learning the solution operator for partial differential equations in pure Julia.
-
<span id="head59">3.8.3. Neural Operator</span>
-
<span id="head61">3.9.1. Symbolic Regression</span>
- cavalab/srbench: A living benchmark framework for symbolic regression
- MilesCranmer/PySR: Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing
- MilesCranmer/SymbolicRegression.jl: Distributed High-Performance symbolic regression in Julia
- sisl/ExprOptimization.jl: Algorithms for optimization of Julia expressions
- trevorstephens/gplearn: Genetic Programming in Python, with a scikit-learn inspired API
-
<span id="head62">3.9.2. SINDy (Sparse Identification of Nonlinear Dynamics from Data)</span>
-
-
<span id="head68">4.0. Special Functions</span>
-
<span id="head66">3.10.2. Global Sensitivity Anylysis</span>
- JuliaMath/SpecialFunctions.jl: Special mathematical functions in Julia
- JuliaMath/InverseFunctions.jl: Interface for function inversion in Julia
- JuliaStats/StatsFuns.jl: Mathematical functions related to statistics.
- JuliaStats/LogExpFunctions.jl: Julia package for various special functions based on `log` and `exp`.
- scheinerman/Permutations.jl: Permutations class for Julia.
- Readme · LambertW.jl
-
-
<span id="head73">4.2. Bifurcation</span>
-
<span id="head72">4.3.2. Interpolations and Approximations</span>
-
Programming Languages
Categories
<span id="head11">3.1. Differentiation, Quadrature and Tensor computation</span>
90
<span id="head30">3.4. Bayesian Inference</span>
82
<span id="head41">3.5. Machine Learning and Deep Learning</span>
46
<span id="head24">3.2. Optimization</span>
32
<span id="head50">3.6. Probablistic Machine Learning and Deep Learning</span>
25
<span id="head54">3.7. Differential Equations and Scientific Computation</span>
23
<span id="head29">3.3. Optimal Control</span>
20
<span id="head7">2.2. (Deep Learning based) Time Series Analysis</span>
18
4.4 Polynomials
18
<span id="head70">4.3. Roots, Intepolations</span>
17
<span id="head56">3.8. Scientific Machine Learning (Differential Equation and ML)</span>
15
<span id="head9">2.4. Data Visualization</span>
14
<span id="head60">3.9. Data Driven Methods (Equation Searching Methods)</span>
13
<span id="head81">3.12. Agents, Graph and Networks</span>
10
<span id="head4"> Smoothing</span>
7
<span id="head75"> Outlier Detection</span>
7
<span id="head69">4.1. Symbolic Computation</span>
7
<span id="head8">2.3. Survival Analysis</span>
7
<span id="head64">3.10. Model Evaluation</span>
6
<span id="head68">4.0. Special Functions</span>
6
<span id="head3">1.1. Data Science</span>
6
<span id="head77">3.11. Optimal Transportation</span>
5
<span id="head73">4.2. Bifurcation</span>
2
<span id="head6">2.1. Statistics</span>
2
<span id="head76">2.5. GLM</span>
2
Sub Categories
<span id="head17">3.1.3. Matrix and Tensor computation</span>
60
3.2.5. First Order Methods
32
<span id="head66">3.10.2. Global Sensitivity Anylysis</span>
32
<span id="head72">4.3.2. Interpolations and Approximations</span>
31
<span id="head23">3.1.4.Platforms, CPU, GPU and TPU</span>
18
<span id="head42">3.5.1. Machine Learning</span>
17
<span id="head14">3.1.2. Quadrature</span>
15
<span id="head35">3.4.5. Gaussion, non-Gaussion and Kernel</span>
14
<span id="head12">3.1.1. Auto Differentiation</span>
12
<span id="head31">3.4.1. MCMC</span>
12
<span id="head55">3.7.1. Partial differential equation</span>
11
Semi-supervised Learning
11
3.6.4 BNN
10
<span id="head32">3.4.2. Approximate Bayesian Computation (ABC)</span>
10
<span id="head33">3.4.3. Data Assimilation (SMC, particles filter)</span>
10
<span id="head43">3.5.2. Deep Learning</span>
8
<span id="head36">3.4.6. Bayesian Optimization</span>
7
<span id="head57">3.8.1. Universal Differential Equations. (Neural differential equations)</span>
7
<span id="head45">3.5.4. GNN</span>
7
<span id="head53">3.6.3. VAE</span>
7
3.7.2 Fractional Differential and Calculus
7
<span id="head25">3.2.1. Metaheuristic</span>
7
<span id="head71">4.3.1. Roots</span>
6
<span id="head37">3.4.7. Information theory</span>
6
Venn Diagrams
6
<span id="head39">3.4.9. Casual</span>
5
<span id="head26">3.2.2. Evolution Stragegy</span>
5
<span id="head61">3.9.1. Symbolic Regression</span>
5
<span id="head44">3.5.3. Reinforce Learning</span>
5
<span id="head59">3.8.3. Neural Operator</span>
4
<span id="head34">3.4.4. Variational Inference</span>
4
<span id="head52">3.6.2. Normilization Flows</span>
4
<span id="head63">3.9.3. DMD (Dynamic Mode Decomposition)</span>
4
<span id="head58">3.8.2. Physical Informed Neural Netwworks</span>
4
<span id="head40">3.4.10. Sampling</span>
3
<span id="head49">3.5.8. Visulization</span>
3
<span id="head27">3.2.3. Genetic Algorithms</span>
2
<span id="head38">3.4.8. Uncertanty</span>
2
<span id="head46">3.5.5. Transformer</span>
2
<span id="head65">3.10.1. Structure Idendification</span>
2
<span id="head62">3.9.2. SINDy (Sparse Identification of Nonlinear Dynamics from Data)</span>
2
<span id="head51">3.6.1. GAN</span>
1
<span id="head28">3.2.4. Nonconvex</span>
1
<span id="head47">3.5.6. Transfer Learning</span>
1
<span id="head48">3.5.7. Neural Tangent</span>
1
Keywords
julia
123
machine-learning
71
python
56
deep-learning
49
optimization
34
bayesian-inference
30
pytorch
27
data-science
25
time-series
24
julia-language
23
scientific-machine-learning
21
differential-equations
18
sciml
17
automatic-differentiation
16
neural-networks
15
statistics
12
math
12
tensorflow
11
linear-algebra
10
forecasting
10
probabilistic-programming
10
variational-inference
9
pde
9
numerical-integration
9
gpu
9
anomaly-detection
9
data-analysis
8
neural-network
8
gaussian-processes
8
ode
8
scikit-learn
7
nonlinear-optimization
7
time-series-analysis
7
automl
7
dynamical-systems
7
timeseries
7
julialang
7
mcmc
7
optimal-control
7
integration
7
partial-differential-equations
7
parameter-estimation
7
classification
7
numerical-optimization
6
differentialequations
6
jax
6
regression
6
modeling-language
6
bayesian-statistics
6
bayesian
6