Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

awesome-sciml

Awesome-spatial-temporal-scientific-machine-learning-data-mining-packages. Julia and Python resources on spatial and temporal data mining. Mathematical epidemiology as an application. Most about package information. Data Sources Links and Epidemic Repos are also included.
https://github.com/Mathepia/awesome-sciml

Last synced: 4 days ago
JSON representation

Sub Categories
<span id="head17">3.1.3. Matrix and Tensor computation</span> 60 3.2.5. First Order Methods 32 <span id="head66">3.10.2. Global Sensitivity Anylysis</span> 32 <span id="head72">4.3.2. Interpolations and Approximations</span> 31 <span id="head23">3.1.4.Platforms, CPU, GPU and TPU</span> 18 <span id="head42">3.5.1. Machine Learning</span> 17 <span id="head14">3.1.2. Quadrature</span> 15 <span id="head35">3.4.5. Gaussion, non-Gaussion and Kernel</span> 14 <span id="head12">3.1.1. Auto Differentiation</span> 12 <span id="head31">3.4.1. MCMC</span> 12 <span id="head55">3.7.1. Partial differential equation</span> 11 Semi-supervised Learning 11 3.6.4 BNN 10 <span id="head32">3.4.2. Approximate Bayesian Computation (ABC)</span> 10 <span id="head33">3.4.3. Data Assimilation (SMC, particles filter)</span> 10 <span id="head43">3.5.2. Deep Learning</span> 8 <span id="head36">3.4.6. Bayesian Optimization</span> 7 <span id="head57">3.8.1. Universal Differential Equations. (Neural differential equations)</span> 7 <span id="head45">3.5.4. GNN</span> 7 <span id="head53">3.6.3. VAE</span> 7 3.7.2 Fractional Differential and Calculus 7 <span id="head25">3.2.1. Metaheuristic</span> 7 <span id="head71">4.3.1. Roots</span> 6 <span id="head37">3.4.7. Information theory</span> 6 Venn Diagrams 6 <span id="head39">3.4.9. Casual</span> 5 <span id="head26">3.2.2. Evolution Stragegy</span> 5 <span id="head61">3.9.1. Symbolic Regression</span> 5 <span id="head44">3.5.3. Reinforce Learning</span> 5 <span id="head59">3.8.3. Neural Operator</span> 4 <span id="head34">3.4.4. Variational Inference</span> 4 <span id="head52">3.6.2. Normilization Flows</span> 4 <span id="head63">3.9.3. DMD (Dynamic Mode Decomposition)</span> 4 <span id="head58">3.8.2. Physical Informed Neural Netwworks</span> 4 <span id="head40">3.4.10. Sampling</span> 3 <span id="head49">3.5.8. Visulization</span> 3 <span id="head27">3.2.3. Genetic Algorithms</span> 2 <span id="head38">3.4.8. Uncertanty</span> 2 <span id="head46">3.5.5. Transformer</span> 2 <span id="head65">3.10.1. Structure Idendification</span> 2 <span id="head62">3.9.2. SINDy (Sparse Identification of Nonlinear Dynamics from Data)</span> 2 <span id="head51">3.6.1. GAN</span> 1 <span id="head28">3.2.4. Nonconvex</span> 1 <span id="head47">3.5.6. Transfer Learning</span> 1 <span id="head48">3.5.7. Neural Tangent</span> 1